【題目】如圖,已知矩形ABCD中,FBC上一點(diǎn),且AFBC,DEAF,垂足是E,連接DF.求證:

1)△ABF≌△DEA;

2DF是∠EDC的平分線.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)矩形性質(zhì)得出B90°ADBC,ADBC,推出DAEAFB,求出AFAD,根據(jù)AAS證出即可;

2)有全等推出DEABDC,根據(jù)HLDEF≌△DCF,根據(jù)全等三角形的性質(zhì)推出即可.

1四邊形ABCD是矩形,

∴∠B90°ADBC,ADBC

∴∠DAEAFB

DEAF,

∴∠DEAB90°

AFBC,

AFAD,

DEAABF

∴△DEA≌△ABFAAS);

2)證明:由(1)知ABF≌△DEA,

DEAB,

四邊形ABCD是矩形,

∴∠C90°,DCAB,

DCDE

∵∠CDEF90°

RtDEFRtDCF

RtDEFRtDCFHL

∴∠EDFCDF,

DFEDC的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC ,∠BAC=90°,AB=AC,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,過點(diǎn)AAEAD,并且始終保持AE=AD,連接CE.

(1)求證△ABD △ACE ;

(2)若AF平分∠DAEBCF,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;

(3)在(2)的條件下,BD=3,CF=4,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,按此做法進(jìn)行下去,點(diǎn)A4的坐標(biāo)為______,點(diǎn)An______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在□ABCD中,線段EF分別交ADACBC于點(diǎn)EO、F,EF⊥ACAO=CO

1)求證:△AOE≌△COF

2)在本題的已知條件中,有一個(gè)條件如果去掉,并不影響(1)的證明,你認(rèn)為這個(gè)多余的條件是 (直接寫出這個(gè)條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線bc是常數(shù),且c0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(1,0)

1b______,點(diǎn)B的橫坐標(biāo)為_______(上述結(jié)果均用含c的代數(shù)式表示);

2)連結(jié)BC,過點(diǎn)A作直線AE//BC,與拋物線交于點(diǎn)E.點(diǎn)Dx軸上一點(diǎn),坐標(biāo)為(2,0),當(dāng)CD、E三點(diǎn)在同一直線上時(shí),求拋物線的解析式;

3)在(2)的條件下,點(diǎn)Px軸下方的拋物線上的一動(dòng)點(diǎn),連結(jié)PB、PC.設(shè)△PBC的面積為SS的取值范圍;△PBC的面積S為正整數(shù),則這樣的△PBC共有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一點(diǎn),且AEBC,DFAE,垂足是F,連接DE

求證:(1DFAB

2DE是∠FDC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八(1)班同學(xué)為了解2018年姜堰某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,請(qǐng)解答以下問題:

月均用水量xt

頻數(shù)(戶)

頻率

0x≤5

6

0.12

5x≤10

12

0.24

10x≤15

m

0.32

15x≤20

10

n

20x≤25

4

0.08

25x≤30

2

0.04

1)本次調(diào)查采用的調(diào)杳方式是   (填普査抽樣調(diào)查),樣本容量是   ;

2)補(bǔ)全頻數(shù)分布直方圖:

3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計(jì)圖,則月均用水量“15x≤20”的圓心角度數(shù)是   ;

4)若該小區(qū)有5000戶家庭,求該小區(qū)月均用水量超過20t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在倡導(dǎo)學(xué)生大課間活動(dòng)中,隨機(jī)抽取了部分學(xué)生對(duì)“我最喜愛課間活動(dòng)”進(jìn)行了一次抽樣調(diào)查,分別從打籃球、踢足球、自由活動(dòng)、跳繩、其它、等5個(gè)方面進(jìn)行問卷調(diào)查(每人只能選一項(xiàng)),根據(jù)調(diào)查結(jié)果繪制了如圖的不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息,解答下列問題

(1)本次調(diào)查共抽取了學(xué)生多少人?

(2)求本次調(diào)查中喜歡踢足球人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若全校共有中學(xué)生1200人,請(qǐng)你估計(jì)我校喜歡跳繩學(xué)生有多少人.

查看答案和解析>>

同步練習(xí)冊(cè)答案