【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,的頂點均在格點上,點A的坐標為,點B的坐標為,點C的坐標為.
(1)以點C為旋轉(zhuǎn)中心,將旋轉(zhuǎn)后得到,請畫出;
(2)平移,使點A的對應(yīng)點的坐標為,請畫出;
(3)若將繞點P旋轉(zhuǎn)可得到,則點P的坐標為___________.
【答案】(1)見解析;(2)見解析;(3)(-1,0).
【解析】
(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應(yīng)點A1、B1、C1即可;
(2)根據(jù)點A和A2的坐標特征確定平移的方向和距離,利用次平移規(guī)律寫出點B2、C2的坐標,然后描點即可;、
(3)連接A1A2、C1C2、B1B2,它們都經(jīng)過點(-1,0),從而得到旋轉(zhuǎn)中心點P.
解:(1)如圖,△A1B1C1為所作;
(2)如圖,△A2B2C2為所作.
(3)△A1B1C1繞點P旋轉(zhuǎn)可得到△A2B2C2,則點P點坐標為(-1,0).
故答案為:(1)見解析;(2)見解析;(3)(-1,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MN∥BC,設(shè) MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F.
(1)求證:OE=OF;
(2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.
(3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想△ABC 的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,正方形ABCD,E為邊AD上一點,△ABE繞點A逆時針旋轉(zhuǎn)90°后得到△ADF.
⑴ 如果∠AEB=65°,求∠DFE的度數(shù);
⑵ BE與DF的數(shù)量關(guān)系如何?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB = AC,AB的垂直平分線DE交AC于D,交AB于E.
(1)若AB = AC = 8cm,BC = 6cm,求△BCD的周長;
(2)若∠CBD = 30°,試求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解某個年級的學習情況,在這個年級抽取了50名學生,對某學科進行測試,將所得成績(成績均為整數(shù))整理后,列出表格:
分組 | 50~59分 | 60~69分 | 70~79分 | 80~89分 | 90~99分 |
頻率 | 0.04 | 0.04 | 0.16 | 0.34 | 0.42 |
(1)本次測試90分以上的人數(shù)有________人;(包括90分)
(2)本次測試這50名學生成績的及格率是________;(60分以上為及格,包括60分)
(3)這個年級此學科的學習情況如何?請在下列三個選項中,選一個填在題后的橫線上________.
A.好 B.一般 C.不好
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運動,設(shè) M、N 分別從點 B、A 同時出發(fā),運動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當 t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當 t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com