【題目】如圖:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形AnBnCnDn的面積為_____

【答案】

【解析】∵四邊形A1B1C1D1是矩形,∴∠A1=B1=C1=D1=90°,A1B1=C1D1,B1C1=A1D1,

又∵各邊中點是A2,B2,C2,D2,∴四邊形A2B2C2D2的面積=SA1A2D2+SC2D1D2+SC1B2C2+SB1B2A2=A1D1A1B1×4=矩形A1B1C1D1的面積,即四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積,同理,:四邊形A3B3C3D3=四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積,以此類推,四邊形AnBnCnDn的面積=矩形A1B1C1D1的面積=,故答案為: .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為的正方形的邊長增加,得到一個邊長為的正方形.在圖1的基礎上,某同學設計了一個解釋驗證的方案(詳見方案1

方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.

方式1

方式2

因此,

1)請模仿方案1,在圖1的基礎上再設計一種方案,用以解釋驗證

2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請在此基礎上再設計一個方案用以解釋驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,BD=DF;

求證:(1CF=EB

2AB=AF+2EB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC為等邊三角形,BD為中線,延長BCE,使CE=CD=1,連接DE,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰RtABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點CCEAD于點E.

(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;

(2)如圖2,過點CCFCE,且CF=CE,連接FE并延長交AB于點M,連接BF,求證:AM=BM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖,過y軸上任意一點p,作x軸的平行線,分別與反比例函數(shù)y=和y=的圖象交于A點和B點若C為x軸上任意一點,連接AC、BC,則ABC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與ABC關(guān)于x軸對稱的A 1B1C1,并寫出點A1的坐標;

(2)以原點O 為位似中心,在原點的另一側(cè)畫出A2B2C2,使,并寫出點A2的坐標.

查看答案和解析>>

同步練習冊答案