精英家教網(wǎng)已知:如圖,△ABC中,AD⊥BC于D,下列條件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)
CD
AD
=
AC
AB

(4)AB2=BD•BC.
其中一定能夠判定△ABC是直角三角形的有( 。
A、0個B、1個C、2個D、3個
分析:根據(jù)已知對各個條件進行分析,從而得到答案.
解答:解:(1)不能,∵AD⊥BC,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC,∴無法證明△ABC是直角三角形;
(2)能,∵∠B=∠DAC,則∠BAD=∠C,∴∠B+∠BAD=∠C+∠DAC=180°÷2=90°;
(3)能
∵CD:AD=AC:AB,∠ADB=∠ADC=90°,
∴Rt△ABD∽Rt△CAD(直角三角形相似的判定定理),
∴∠ABD=∠CAD;∠BAD=∠ACD
∵∠ABD+∠BAD=90°
∴∠CAD+∠BAD=90°
∵∠BAC=∠CAD+∠BAD
∴∠BAC=90°;
(4)能,∵能說明△CBA∽△ABD,∴△ABC一定是直角三角形.
共有3個.
故選D.
點評:通過計算角相等和邊成比例,判斷出兩個三角形是否相似,進而判斷出是否為直角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案