【題目】a是方程x22x10的解,則代數(shù)式﹣2a2+4a+2020的值為_____

【答案】2018

【解析】

先利用一元二次方程的解的定義得到a2﹣2a1,再把﹣2a2+4a+2020變形為﹣2a2﹣2a+2020,然后利用整體代入的方法計(jì)算.

解:a是方程x2﹣2x﹣10的解,

a2﹣2a﹣10,

a2﹣2a1

∴﹣2a2+4a+2020

=﹣2a22a+2020

=﹣2×1+2020

2018

故答案為:2018

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,D為BC邊上一點(diǎn),B,C兩點(diǎn)到直線AD的距離相等.
(1)如圖1,若△ABC是等腰三角形,AB=AC,則點(diǎn)D的位置在;

(2)如圖2,若△ABC是任意一個(gè)銳角三角形,猜想點(diǎn)D的位置是否發(fā)生變化,請(qǐng)補(bǔ)全圖形并加以證明;

(3)如圖3,當(dāng)△ABC是直角三角形,∠A=90°,并且點(diǎn)D滿足(2)的位置條件,用等式表示線段AB,AC,AD之間的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=x+3y軸交于點(diǎn)A,又與正比例函數(shù)y=kx的圖象交于點(diǎn)B(-1,m)

①求點(diǎn)A的坐標(biāo);

②確定m的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)林業(yè)局要考察一種樹(shù)苗移植的成活率,對(duì)該地區(qū)這種樹(shù)苗移植成活情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)表,根據(jù)統(tǒng)計(jì)圖提供的信息解決下列問(wèn)題:

這種樹(shù)苗成活的頻率穩(wěn)定在_________,成活的概率估計(jì)值為_______________

該地區(qū)已經(jīng)移植這種樹(shù)苗5萬(wàn)棵.

估計(jì)這種樹(shù)苗成活___________萬(wàn)棵;

如果該地區(qū)計(jì)劃成活18萬(wàn)棵這種樹(shù)苗,那么還需移植這種樹(shù)苗約多少萬(wàn)棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題為真命題的是(
A.有公共頂點(diǎn)的兩個(gè)角是對(duì)頂角
B.多項(xiàng)式x2﹣4x因式分解的結(jié)果是x(x2﹣4)
C.a+a=a2
D.一元二次方程x2﹣x+2=0無(wú)實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線L: 與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)
C(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng)。

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形AOBC在直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,已知點(diǎn)C的坐標(biāo)是(8,4).

(1)求對(duì)角線AB所在直線的函數(shù)關(guān)系式;
(2)對(duì)角線AB的垂直平分線MN交x軸于點(diǎn)M,連接AM,求線段AM的長(zhǎng);
(3)若點(diǎn)P是直線AB上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAM的面積與長(zhǎng)方形OABC的面積相等時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】y=x2+2的對(duì)稱(chēng)軸是直線(
A.x=2
B.x=0
C.y=0
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,點(diǎn)E、F在BD上,且BF=DE.
(1)寫(xiě)出圖中所有你認(rèn)為全等的三角形;
(2)連接AF、CE,四邊形AFCE是平行四邊形嗎?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案