【題目】(2016浙江省衢州市)如圖1,在直角坐標(biāo)系xoy中,直線ly=kx+bx軸,y軸于點(diǎn)E,F,點(diǎn)B的坐標(biāo)是(2,2),過(guò)點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動(dòng)點(diǎn),以BD為對(duì)稱軸,作與BCD或軸對(duì)稱的BCD

(1)當(dāng)∠CBD=15°時(shí),求點(diǎn)C的坐標(biāo).

(2)當(dāng)圖1中的直線l經(jīng)過(guò)點(diǎn)A,且時(shí)(如圖2),求點(diǎn)DCO的運(yùn)動(dòng)過(guò)程中,線段BC掃過(guò)的圖形與OAF重疊部分的面積.

(3)當(dāng)圖1中的直線l經(jīng)過(guò)點(diǎn)DC時(shí)(如圖3),以DE為對(duì)稱軸,作于DOE或軸對(duì)稱的DOE,連結(jié)OC,OO,問(wèn)是否存在點(diǎn)D,使得DOECOO相似?若存在,求出k、b的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)C′(,1);(2);(3)存在,k=,b=1.

【解析】試題(1)利用翻折變換的性質(zhì)得出∠CBD=CBD=15°,CB=CB=2,進(jìn)而得出CH的長(zhǎng),進(jìn)而得出答案;

(2)首先求出直線AF的解析式,進(jìn)而得出當(dāng)DO重合時(shí),點(diǎn)CA重合,且BC掃過(guò)的圖形與OAF重合部分是弓形,求出即可;

(3)根據(jù)題意得出DOECOO相似,則COO必是Rt,進(jìn)而得出RtBAERtBCEHL),再利用勾股定理求出EO的長(zhǎng)進(jìn)而得出答案.

試題解析:(1)∵△CBD≌△CBD,∴∠CBD=CBD=15°,CB=CB=2,∴∠CBC′=30°,如圖1,作CHBCH,則CH=1,HB=CH=,∴點(diǎn)C的坐標(biāo)為:(,1);

(2)如圖2,A(2,0),,∴代入直線AF的解析式為:,b=,則直線AF的解析式為:,∴∠OAF=30°,BAF=60°,∵在點(diǎn)DCO的運(yùn)動(dòng)過(guò)程中,BC掃過(guò)的圖形是扇形,∴當(dāng)DO重合時(shí),點(diǎn)CA重合,且BC掃過(guò)的圖形與OAF重合部分是弓形,當(dāng)C在直線上時(shí),BC′=BC=AB,∴△ABC是等邊三角形,這時(shí)∠ABC′=60°,∴重疊部分的面積是:=;

(3)如圖3,設(shè)OODE交于點(diǎn)M,則OM=OMOODE,若DOECOO相似,則COO必是Rt,在點(diǎn)DCO的運(yùn)動(dòng)過(guò)程中,COO中顯然只能∠COO=90°,CODE,CD=OD=1,b=1,連接BE,由軸對(duì)稱性可知CD=CD,BC′=BC=BABCE=BCD=BAE=90°,在RtBAERtBCEBE=BE,AB=BC′,RtBAERtBCEHL),AE=CEDE=DC′+CE=DC+AE,設(shè)OE=x,則AE=2﹣x,DE=DC+AE=3﹣x,由勾股定理得:,解得:x=D(0,1),E,0),,解得:k=∴存在點(diǎn)D,使DOECOO相似,這時(shí)k=b=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,P是AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),連接PO并延長(zhǎng),交BC于點(diǎn)Q.

(1) 求證:四邊形PBQD是平行四邊形

(2) 若AD=6cm,AB=4cm, 點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t s , 請(qǐng)用含t的代數(shù)式表示PD的長(zhǎng),并求出當(dāng)t為何值時(shí),四邊形PBQD是菱形。并求出此時(shí)菱形的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人分別從相距100kmA、B兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛.甲出發(fā)2h后到達(dá)B地立即按原路返回,返回時(shí)速度提高了30km/h,回到A地后在A地休息等乙,乙在出發(fā)5h后到達(dá)A地.(友情提醒:可以借助用線段圖分析題目)

1)乙的速度是_______,甲從A地到B地的速度是_______,甲在出發(fā)_______小時(shí)到達(dá)A地.

2)出發(fā)多長(zhǎng)時(shí)間兩人首次相遇?

3)出發(fā)多長(zhǎng)時(shí)間時(shí),兩人相距30千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)A(1,0),點(diǎn)A1次向上跳動(dòng)1個(gè)單位至點(diǎn)A1(1,1),緊接著第2次向右跳動(dòng)2個(gè)單位至點(diǎn)A2(1,1),第3次向上跳動(dòng)1個(gè)單位至點(diǎn)A3,第4次向左跳動(dòng)3個(gè)單位至點(diǎn)A4,第5次又向上跳動(dòng)1個(gè)單位至點(diǎn)A5,第6次向右跳動(dòng)4個(gè)單位至點(diǎn)A6,……,依此規(guī)律跳動(dòng)下去,點(diǎn)A2019次跳動(dòng)至點(diǎn)A2019的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)Ax軸負(fù)半軸上,頂點(diǎn)Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過(guò)點(diǎn)CD,則點(diǎn)B的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC中點(diǎn),AEBD,且AE=BD.

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點(diǎn)F,若BE=2,AE=2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,并回答下列問(wèn)題

如圖1,以AB為軸,把△ABC翻折180°,可以變換到△ABD的位置;

如圖2,把△ABC沿射線AC平移,可以變換到△DEF的位置.像這樣,其中的一個(gè)三角形是另一個(gè)三角形經(jīng)翻折、平移等方法變換成的,這種只改變位置,不改變形狀大小的圖形變換,叫三角形的全等變換.班里學(xué)習(xí)小組針對(duì)三角形的全等變換進(jìn)行了探究和討論

1)請(qǐng)你寫(xiě)出一種全等變換的方法(除翻折、平移外),   

2)如圖2,前進(jìn)小組把△ABC沿射線AC平移到△DEF,若平移的距離為2,且AC5,則DC   

3)如圖3,圓夢(mèng)小組展開(kāi)了探索活動(dòng),把△ABC紙片沿DE折疊,使點(diǎn)A落在四邊形BCDE內(nèi)部點(diǎn)A′的位置,且得出一個(gè)結(jié)論:2A′=∠1+∠2.請(qǐng)你對(duì)這個(gè)結(jié)論給出證明.

4)如圖4,奮進(jìn)小組則提出,如果把△ABC紙片沿DE折疊,使點(diǎn)A落在四邊形BCDE外部點(diǎn)A′的位置,此時(shí)∠A′與∠1、∠2之間結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,寫(xiě)出正確結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E在邊AB上,連接DE,取DE的中點(diǎn)F,連接EO并延長(zhǎng)交CD于點(diǎn)G.若BE=3CG,OF=2,則線段AE的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題情境)一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:

如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點(diǎn)D,點(diǎn)EF分別在ABC上,∠1=∠2,FG⊥AB于點(diǎn)G,求證:△CDE≌△EGF

1)閱讀理解,完成解答

本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)這道練習(xí)題的證明過(guò)程;

2)特殊位置,證明結(jié)論

CE平分∠ACD,其余條件不變,求證:AE=BF;

3)知識(shí)遷移,探究發(fā)現(xiàn)

如圖,已知在Rt△ABC中,AC=BC∠ACB=90°,CD⊥AB于點(diǎn)D,若點(diǎn)EDB的中點(diǎn),點(diǎn)F在直線CB上且滿足EC=EF,請(qǐng)直接寫(xiě)出AEBF的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案