【題目】如圖是一張矩形紙片ABCD,已知AB8,AD6EAB上一點(diǎn),AE5,現(xiàn)要剪下一張等腰三角形紙片(AEP),使點(diǎn)P落在矩形ABCD的某一條邊上,則等腰三角形AEP的底邊上的高的長(zhǎng)是_____

【答案】6

【解析】

分情況討論:①當(dāng)APAE5時(shí),則AEP是等腰直角三角形,得出底邊PEAE5,由等腰直角三角形的性質(zhì)可求AH的長(zhǎng);

②當(dāng)P'EAE5時(shí),求出BE,由勾股定理求出P'B,再由勾股定理求出AP',由銳角三角函數(shù)可求EM的長(zhǎng);

③當(dāng)P'AP'E時(shí),由平行線間距離處處相等,可求AD6,即可得出結(jié)論.

解:①當(dāng)APAE5時(shí),如圖所示:過(guò)點(diǎn)AAHPEH,

∵∠BAD90°,

∴△AEP是等腰直角三角形,

∴底邊PEAE5,

AHPE,AEP是等腰直角三角形,

AHPE

②當(dāng)P'EAE5時(shí),

BEABAE853,∠B90°,

P'B4,

∴底邊AP'4

tanP'AB,

,

ME;

③當(dāng)P'AP'E時(shí),

ABCD,

∴底邊AE的高為AD6;

綜上所述:等腰三角形AEP的底邊上的高的長(zhǎng)是6

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過(guò)B1B1A2OA1交雙曲線于點(diǎn)A2,過(guò)A2A2B2A1B1x軸于點(diǎn)B2,得到第二個(gè)等邊B1A2B2;過(guò)B2B2A3B1A2交雙曲線于點(diǎn)A3,過(guò)A3A3B3A2B2x軸于點(diǎn)B3,得到第三個(gè)等邊B2A3B3;以此類(lèi)推,,則點(diǎn)B6的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON30°,點(diǎn)A1ON上,點(diǎn)C1OM上,OA1A1C12C1B1ON于點(diǎn)B1,以A1B1B1C1為鄰邊作矩形A1B1C1D1,點(diǎn)A1,A2關(guān)于點(diǎn)B對(duì)稱,A2C2A1C1OM于點(diǎn)C2,C2B2ON于點(diǎn)B2,以A2B2B2C2為鄰邊作矩形A2B2C2D2,連接D1D2,點(diǎn)A2,A3關(guān)于點(diǎn)B2對(duì)稱,A3C3A2C2OM于點(diǎn)C3,C3B3ON于點(diǎn)B3,以A3B3B3C3為鄰邊作矩形A3B3C3D3,連接D2D3,……依此規(guī)律繼續(xù)下去,則DnDn+1_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[閱讀理解]

構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點(diǎn)問(wèn)題.

例如:如圖,D是△ABCAB上一點(diǎn),EAC的中點(diǎn),過(guò)點(diǎn)CCFAB,交DE的延長(zhǎng)線于點(diǎn)F,則易證E是線段DF的中點(diǎn).

[經(jīng)驗(yàn)運(yùn)用]

請(qǐng)運(yùn)用上述閱讀材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題.

1)如圖1,在正方形ABCD中,點(diǎn)EAB上,點(diǎn)FBC的延長(zhǎng)線上,且滿足AECF,連接EFAC于點(diǎn)G

求證:GEF的中點(diǎn);

CGBE;

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點(diǎn)EAB上,點(diǎn)FBC的延長(zhǎng)線上,且滿足AE2CF,連接EFAC于點(diǎn)G.探究BECG之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,若點(diǎn)EBA的延長(zhǎng)線上,點(diǎn)F在線段BC上,DFAC于點(diǎn)H,BF2,CF1,( 2)中的其它條件不變,請(qǐng)直接寫(xiě)出GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與AB重合),D為的中點(diǎn),過(guò)點(diǎn)D作弦DEABF,PBA延長(zhǎng)線上一點(diǎn),且∠PEA=∠B

1)求證:PE是⊙O的切線;

2)連接CADE相交于點(diǎn)GCA的延長(zhǎng)線交PEH,求證:HEHG

3)若tanP,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD20米.

1)求∠BCD的度數(shù);

2)求旗桿AC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案:一戶家庭的月均用水量不超過(guò)(單位:)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為此擬召開(kāi)聽(tīng)證會(huì),以確定一個(gè)合理的月均用水量標(biāo)準(zhǔn).通過(guò)抽樣,獲得了前一年1000戶家庭每戶的月均用水量(單位:),將這1000個(gè)數(shù)據(jù)按照,,…,分成8組,制成了如圖所示的頻數(shù)分布直方圖.

1)寫(xiě)出的值,并估計(jì)這1000戶家庭月均用水量的平均數(shù);(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表)

2)假定該市政府希望70%的家庭的月均用水量不超過(guò)標(biāo)準(zhǔn),請(qǐng)判斷若以(1)中所求得的平均數(shù)作為標(biāo)準(zhǔn)是否合理?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢(shì)頭,各地教育部門(mén)在推遲各級(jí)學(xué)校開(kāi)學(xué)時(shí)間的同時(shí)提出聽(tīng)課不停學(xué)的要求,各地學(xué)校也都開(kāi)展了遠(yuǎn)程網(wǎng)絡(luò)教學(xué),某校集中為學(xué)生提供四類(lèi)在線學(xué)習(xí)方式:在線閱讀、在線聽(tīng)課、在線答疑、在線討論,為了了解學(xué)生的需求,該校通過(guò)網(wǎng)絡(luò)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類(lèi)在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請(qǐng)補(bǔ)全條形圖;

3)請(qǐng)求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠(yuǎn)程網(wǎng)絡(luò)教學(xué)活動(dòng),請(qǐng)求出小寧和小娟選擇同一種學(xué)習(xí)方式的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案