計(jì)算:12-22+32-42+52-62+…+20012-20022+20032-20042.________
-2009010
分析:本題是平方差公式的應(yīng)用.
解答:1
2-2
2+3
2-4
2+5
2-6
2+…+2001
2-2002
2+2003
2-2004
2=-[(2
2-1
2)+(4
2-3
2)+(6
2-5
2)+…+(2002
2-2001
2)+(2004
2-2003
2)],
利用平方差公式1
2-2
2+3
2-4
2+5
2-6
2+…+2001
2-2002
2+2003
2-2004
2=-[(2
2-1
2)+(4
2-3
2)+(6
2-5
2)+…+(2002
2-2001
2)+(2004
2-2003
2)]
=-[(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+(2002-2001)(2002+2001)+(2004-2003)(2004+2003)]
=-(1+2+3+4+…+2002+2003+2004)=
=-2 009 010.
點(diǎn)評(píng):運(yùn)用平方差公式計(jì)算時(shí),關(guān)鍵要找相同項(xiàng)和相反項(xiàng),其結(jié)果是相同項(xiàng)的平方減去相反項(xiàng)的平方.要把多項(xiàng)式轉(zhuǎn)化為平方差公式的形式.