【題目】某學(xué)校對全體學(xué)生“新冠肺炎”疫情防控知識的掌握情況進(jìn)行了線上測試,該測試共有道題,每題分,滿分分,該校將七年級一班和二班的成績進(jìn)行整理,得到如下信息:
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀(分以上為優(yōu)秀) |
一班 | ||||
二班 |
請你結(jié)合圖表中所給信息,解答下列問題:
(1)請直接寫出,,的值;
(2)你認(rèn)為哪個班對疫情防控知識掌握較好,請說明理由(選擇兩個角度說明推斷的合理性)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年之際,某校開展了“校園文化藝術(shù)”活動,活動項目有:書法、繪畫、聲樂和器樂,要求全校學(xué)生人人參加,并且每人只能參加其中一項活動,政教處在該校學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查和統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:
(1)請補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)該校初中學(xué)生中,參加“書法”項目的學(xué)生所占的百分比是多少?
(3)若該校共有1500人,請估計其中參加“器樂”項目的高中學(xué)生有多少人?
(4)經(jīng)政教處對所有參加“繪畫”項目的作品進(jìn)行評比,共選出2名初中學(xué)生和2名高中學(xué)生的最佳作品,學(xué)校決定從這4名學(xué)生中隨機(jī)抽取2人作為學(xué)生會“繪畫社團(tuán)”的團(tuán)生,那么正好抽到一名初中學(xué)生和一名高中學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,點分別在上,且.設(shè)的邊上的高為,的邊上的高為.
(1)若、的面積分別為3,1,則 ;
(2)設(shè)、、四邊形的面積分別為,求證:;
(3)如圖②,在中,點分別在上,點在上,且, . 若、、的面積分別為3, 7, 5,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD 的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當(dāng)矩形與△CBD重疊部分的面積為時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形,將矩形繞點按順時針方向旋轉(zhuǎn),當(dāng)落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形,設(shè)旋轉(zhuǎn)角為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙經(jīng)過兩點,,點是弧AB的中點,連接交弦于點,.
(1)求⊙的半徑;
(2)過點分別作的平行線,交于點是⊙上一點,連接交⊙于點,且時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90o,BE是它的角平分線,D在AB邊上,以DB為直徑的半圓O經(jīng)過點E.
(1)試說明:AC是圓O的切線;
(2)若∠A=30o,圓O的半徑為4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以BC為直徑的⊙O交△CFB的邊CF于點A,BM平分∠ABC交AC于點M,AD⊥BC于點D,AD交BM于點N,ME⊥BC于點E,AB2=AF·AC,cos∠ABD=,AD=12.
(1)求證:△ABF∽△ACB;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y的正半軸交于點C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點為E.
(1)拋物線的對稱軸與x軸的交點E坐標(biāo)為_____,點A的坐標(biāo)為_____;
(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;
(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點,過點Q作y軸的平行線,與直線BC交于點M,與拋物線交于點N,連結(jié)CN,將△CMN沿CN翻折,M的對應(yīng)點為M′.在圖②中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com