【題目】已知一元二次方程x2+2m+1x+m210

1)若方程有兩個不相等的實數(shù)根,試求m的取值范圍;

2)若拋物線yx2+2m+1x+m21與直線yx+m沒有交點(diǎn),試求m的取值范圍;

3)求證:不論m取何值,拋物線yx2+2m+1x+m21圖象的頂點(diǎn)都在一條定直線上.

【答案】(1)m>﹣.(2)m<﹣1.(3)詳見解析

【解析】

1)根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;

2)將一次函數(shù)解析式代入二次函數(shù)解析式中整理后可得出關(guān)于x的一元二次方程,由拋物線與直線無交點(diǎn),可得出根的判別式△<0,進(jìn)而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;

3)利用二次函數(shù)的性質(zhì)可得出拋物線的頂點(diǎn)坐標(biāo),設(shè)x=﹣m,y=﹣m,則m=﹣x,將m=﹣x代入y中即可得出結(jié)論.

解:(1)∵一元二次方程x2+2m+1x+m210有兩個不相等的實數(shù)根,

∴△=(2m+124m21)>0,

解得:m>﹣

2)將yx+m代入yx2+2m+1x+m21,得:x+mx2+2m+1x+m21,

整理,得:x2+2mx+m2m10

∵拋物線yx2+2m+1x+m21與直線yx+m沒有交點(diǎn),

∴△=(2m24m2m1)<0

解得:m<﹣1

3)證明:∵拋物線解析式為yx2+2m+1x+m21,

a1,b2m+1cm21,

∴拋物線的頂點(diǎn)坐標(biāo)為(﹣),即(﹣m,﹣m).

設(shè)x=﹣m,y=﹣m,則m=﹣x,

y=﹣mx+x

∴不論m取何值,拋物線yx2+2m+1x+m21圖象的頂點(diǎn)都在一條定直線yx上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ADBCABAD,BC()AD, AD為邊作等邊三角形ADE,則∠BEC______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A0,1),B3,3),C1,3).

1)畫出△ABC關(guān)于點(diǎn)O的中心對稱圖形△A1B1C1

2)畫出△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)90°的△AB2C2;直接寫出點(diǎn)C2的坐標(biāo)為   ;

3)求在△ABC旋轉(zhuǎn)到△AB2C2的過程中,點(diǎn)C所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(k為常數(shù),且)x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D

若點(diǎn)D的橫坐標(biāo)為,求拋物線的函數(shù)表達(dá)式;

D點(diǎn)向x軸作垂線,垂足為點(diǎn)M,連結(jié)AD,若,求點(diǎn)D的坐標(biāo);

若在第一象限的拋物線上有一點(diǎn)P,使得以點(diǎn)A,BP為頂點(diǎn)的三角形與相似,請直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx2)(0≤x≤2)記為C1,它與x軸交于點(diǎn)OA1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°C3,交x軸于點(diǎn)A3…如此進(jìn)行下去,則C2019的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個透明的布袋里裝有2個紅球,個白球,它們除顏色外其余都相同,已知任意摸出1個球是紅球的概率為.

1)求的值;

2)先任意摸出1個球,記下顏色后不放回,攪勻,再摸出一個球,請利用畫樹狀圖或列表的方法求出連續(xù)兩次都摸出紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小儒在學(xué)習(xí)了定理直角三角形斜邊上的中線等于斜邊的一半之后做了如下思考:

1)他認(rèn)為該定理有逆定理,即如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形應(yīng)該成立,你能幫小儒證明一下嗎?如圖①,在ABC中,ADBC邊上的中線,若ADBDCD,求證:∠BAC90°

2)接下來,小儒又遇到一個問題:如圖②,已知矩形ABCD,如果在矩形外存在一點(diǎn)E,使得AECE,求證:BEDE,請你作出證明,可以直接用到第(1)問的結(jié)論.

3)在第(2)問的條件下,如果AED恰好是等邊三角形,直接用等式表示出此時矩形的兩條鄰邊ABBC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y的圖象如圖所示,以下結(jié)論:①常數(shù)m<﹣2;②若A(﹣1h),B2,k)在圖象上,則hk;③yx的增大而減。虎苋Px,y)在圖象上,則P'(﹣x,﹣y)也在圖象上.其中正確的是( 。

A. ①②B. ③④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個小球(不放回),再隨機(jī)摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

同步練習(xí)冊答案