已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,過點P作⊙O的切線PD交AC于D.
(1)求證:PD⊥AC;
(2)若∠BAC=120°,BC=4數(shù)學公式,求⊙O的半徑長.

(1)證明:∵AB為⊙O的直徑,
∴∠APB=90°,
∴AP⊥BC,
而AB=AC,
∴PB=PC,
而OB=OA,
∴OP為△ABC的中位線,
∴OP∥AC,
又∵DP是⊙O的切線,
∴OP⊥DP,
∴PD⊥AC;

(2)解:∵AP⊥BC,AB=AC,
∴AP平分∠BAC,
∴∠BAP=∠BAC=60°,
而BC=4,
∴PB=2,
在Rt△ABP中,∠B=90°-60°=30°,
∴PB=AP,
∴AP=2,
∴AB=2AP=4,
∴⊙O的半徑長為2.
分析:(1)根據(jù)直徑所對的圓周角為直角得到AP⊥BC,而AB=AC,由等腰三角形的性質(zhì)得PB=PC,則OP為△ABC的中位線,得OP∥AC;根據(jù)切線的性質(zhì)有OP⊥DP,即可得到結論;
(2)根據(jù)等腰三角形的性質(zhì)得到AP平分∠BAC,即∠BAP=∠BAC=60°,在Rt△ABP中,∠B=90°-60°=30°,PB=BC=2,根據(jù)含30度的直角三角形三邊的關系得到PB=AP,則AP=2,AB=2AP=4,即可得到⊙O的半徑長.
點評:本題考查了圓的切線的性質(zhì):圓的切線垂直于過切點的半徑.也考查了等腰三角形的性質(zhì)、含30度的直角三角形三邊的關系以及圓周角定理的推論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案