【題目】中, ,點(diǎn)分別是邊、的中點(diǎn),將繞著點(diǎn)旋轉(zhuǎn),點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),線段的長(zhǎng)為____________

【答案】

【解析】

當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),有兩種情況,均用三點(diǎn)共線特征及勾股定理求出AE長(zhǎng)為53,采用兩邊對(duì)應(yīng)成比例且?jiàn)A角相等證得△CBD∽△ABE,利用相似三角形對(duì)應(yīng)邊成比例求解.

解:在RtACB中,,

由勾股定理得,AB=,

分別是邊、的中點(diǎn),

DE是△ACB的中位線,BD=2BE= ,

DEAC,DE=

∴∠EDB=90°,

由旋轉(zhuǎn)可得,BD=2,DE=1,BE=,∠BDE=90°,

第一種情況,如圖1,

∵點(diǎn)AD,E三點(diǎn)共線,

∴∠ADB=90°,

由勾股定理得AD=,

AE=AD+DE=5

∵∠ABC=DBE,

∴∠CBD=ABE,

,

∴△CBD∽△ABE,

,

,

CD=

第一種情況,如圖2,

∵點(diǎn)AD,E三點(diǎn)共線,

∴∠ADB=90°,

由勾股定理得AD=,

AE=AD-DE=3

∵∠ABC=DBE,

∴∠CBD=ABE,

,

∴△CBD∽△ABE,

,

,

CD=

CD長(zhǎng)為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC

2)若CD9,tanABE,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;

(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yk1x+3的圖象與坐標(biāo)軸相交于點(diǎn)A(﹣2,0)和點(diǎn)B,與反比例函數(shù)yx0)相交于點(diǎn)C2,m).

1)填空:k1   k2   ;

2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),連接CP并延長(zhǎng),交x軸正半軸于點(diǎn)D,若PDCP12時(shí),求COP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解方程(x2﹣12﹣5x2﹣1+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則

x2﹣1=y2,原方程化為y2﹣5y+4=0

解得y1=1,y2=4

當(dāng)y=1時(shí),x21=1x2=2x=±;

當(dāng)y=4時(shí),x21=4,x2=5x=±

∴原方程的解為x1=,x2=x3=,x4=

解答問(wèn)題:

1)填空:在由原方程得到方程①的過(guò)程中,利用   法達(dá)到了降次的目的,體現(xiàn)了   的數(shù)學(xué)思想.

2)解方程:x4﹣x2﹣6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在第一象限,點(diǎn)Bx軸正半軸上一點(diǎn),∠OAB45°,雙曲線過(guò)點(diǎn)A,交AB于點(diǎn)C,連接OC,若OCAB,則tanABO的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C為圓上一點(diǎn),且∠AOC120°,⊙O的半徑為2P為圓上一動(dòng)點(diǎn),QAP的中點(diǎn),則CQ的長(zhǎng)的最值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過(guò)點(diǎn)

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是垂直于水平面的一棵樹(shù),小馬(身高1.70米)從點(diǎn)A出發(fā),先沿水平方向向左走2米到達(dá)P點(diǎn)處,在P處測(cè)得大樹(shù)的頂端M的仰角為37°,再沿水平方向向左走8米到B點(diǎn),再經(jīng)過(guò)一段坡度i43,坡長(zhǎng)為5米的斜坡BC到達(dá)C點(diǎn),然后再沿水平方向向左行走5米到達(dá)N點(diǎn)(AB、C、N在同一平面內(nèi)),則大樹(shù)MN的高度約為(  )(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60

A.7.8B.9.7C.12D.13.7

查看答案和解析>>

同步練習(xí)冊(cè)答案