【題目】如圖,雙曲線(x>0)經(jīng)過點(diǎn)A(1,6)、點(diǎn)B(2,n),點(diǎn)P的坐標(biāo)為(t,0),且-1≤t<3,則△PAB的最大面積為_______________.
【答案】6.
【解析】
根據(jù)點(diǎn)A坐標(biāo)求出反比例函數(shù)解析式,再求出點(diǎn)B的坐標(biāo),最后根據(jù)同底高不同確定三角形的最大面積即可.
∵雙曲線(x>0)經(jīng)過點(diǎn)A(1,6)
∴k=xy=1×6=6
∴
又:點(diǎn)B(2,n)在上
∴n=3
∴直線AB所在的解析式為:y=-3x+9
根據(jù)題意知:當(dāng)t=-1時(shí),即P(-1,0)時(shí),△PAB的面積最大
設(shè)與直線AB垂直的直線解析式為:y=x+b
把點(diǎn)P(-1,0)代入y=x+b,得b=
∴y=x+
設(shè)直線y=x+與y=-3x+9交點(diǎn)為Q
解方程組得:
∴PQ=
又:AB=
∴△PAB的最大面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn)與思考)如圖①∠ACB=∠ADB=90°那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上,如圖②,如果∠ACB=∠ADB=α(α≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A,B,C三點(diǎn)的圓上?
(應(yīng)用)若四邊形ABCD中,AD∥BC,∠CAD=90°,點(diǎn)E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點(diǎn)F(如圖④),求證:DF為Rt△ACD的外接圓的切線;
(2)如圖⑤,點(diǎn)G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,為上一點(diǎn),,延長至點(diǎn),使得,過點(diǎn)作,垂足在的延長線上,連接.
(1)求證:是的切線;
(2)當(dāng)時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房價(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房價(jià)不得高于340元.設(shè)每個(gè)房間的房價(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的對(duì)角線AC上取點(diǎn)E,使得∠CDE=15°,連接BE.延長BE到F,連接CF,使得CF=BC.
(1)求證:DE=BE;
(2)求證:EF=CE+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A(8,1)、B(n,8)都在反比例函數(shù)(x>0)的圖象上,過點(diǎn)A作AC⊥x軸于C,過點(diǎn)B作BD⊥y軸于D.
(1)求m的值和直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿折線OD﹣DB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿折線OC向C點(diǎn)運(yùn)動(dòng),當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到D時(shí),點(diǎn)Q也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①設(shè)△OPQ的面積為S,寫出S與t的函數(shù)關(guān)系式;
②如圖2,當(dāng)?shù)?/span>P在線段OD上運(yùn)動(dòng)時(shí),如果作△OPQ關(guān)于直線PQ的對(duì)稱圖形△O′PQ,是否存在某時(shí)刻t,使得點(diǎn)Q′恰好落在反比例函數(shù)的圖象上?若存在,求Q′的坐標(biāo)和t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有A、B兩個(gè)不透明袋子,分別裝有3個(gè)除顏色外完全相同的小球。其中,A袋裝有2個(gè)白球,1個(gè)紅球;B袋裝有2個(gè)紅球,1個(gè)白球。
(1)將A袋搖勻,然后從A袋中隨機(jī)取出一個(gè)小球,求摸出小球是白色的概率;
(2)小華和小林商定了一個(gè)游戲規(guī)則:從搖勻后的A,B兩袋中隨機(jī)摸出一個(gè)小球,摸出的這兩個(gè)小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝。請(qǐng)用列表法或畫出樹狀圖的方法說明這個(gè)游戲規(guī)則對(duì)雙方是否公平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長是1個(gè)單位長度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以10元/千克的價(jià)格收購一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:
銷售價(jià)格x(元/千克) | 10 | 13 | 16 | 19 | 22 | |
日銷售量y(千克) | 100 | 85 | 70 | 55 | 40 |
(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定y與x之間的函數(shù)表達(dá)式;
(2)若該水果店要獲得375元的日銷售利潤,銷售單價(jià)x應(yīng)定為多少元?
(3)該水果店應(yīng)該如何確定這批水果的銷售價(jià)格,才能使日銷售利潤W最大?并求出最大利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com