【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的表達式為y=x2-2x-6,AB為半圓的直徑,則這個“果圓”被y軸截得的“弦”CD的長為________.
【答案】2+6
【解析】
將x=0代入拋物線的解析式得y=-6,故此可得到DO的長,然后令y=0可求得點A和點B的坐標,故此可得到AB的長,由M為圓心可得到MC和OM的長,然后依據(jù)勾股定理可求得OC的長,最后依據(jù)CD=OC+OD求解即可.
連接AC,BC.
∵拋物線的解析式為y=x2-2x-6,
∴點D的坐標為(0,-6),
∴OD的長為6.
設(shè)y=0,則0=x2-2x-6,解得:x=-2或6,
∴A(-2,0),B(6,0).
∴AO=2,BO=6,AB=8,M(2,0).
∴MC=4,OM=2.
在Rt△COB中,OC= ,
∴CD=CO+OD=6+2,即這個“果圓”被y軸截得的線段CD的長6+2.
故答案為:6+2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD的四邊都相等,等邊△AEF的頂點E、F分別在BC、CD上,且AE=AB,則∠C=( 。
A. 100° B. 105° C. 110° D. 120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=10,S△ABC =25,∠BAC的平分線交BC于點D,點M,N分別是AD和AB上的動點,則BM+MN的最小值是( )
A. 4 B. C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂園.
如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總?cè)藬?shù).圖中曲線對應的函數(shù)解析式為y=,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, AB=CB, BD=BE, ∠ABC=∠DBE=a.
(1)當a=60°, 如圖①則,∠DPE的度數(shù)______________
(2)若△BDE繞點B旋轉(zhuǎn)一定角度,如圖②所示,求∠DPE(用a表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在北海市創(chuàng)建全國文明城活動中,需要30名志愿者擔任“講文明樹新風”公益廣告宣傳工作,其中男生18人,女生12人.
(1)若從這30人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準備以游戲的方式?jīng)Q定由誰擔任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲擔任,否則乙擔任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在直線MN上求作一點P,使點P到射線OA和OB的距離相等.(要求用尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明過程)
(2)等腰三角形的兩邊長滿足|a-4|+(b-9)2=0.求這個等腰三角形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com