若圓錐的側面展開時一個弧長為16π的扇形,則這個圓錐的底面半徑是   
【答案】分析:利用底面周長=展開圖的弧長可得.
解答:解:16π=2πr
解得r=8.
故答案為:8.
點評:本題考查了圓錐的計算,解答本題的關鍵是有確定底面周長=展開圖的弧長這個等量關系,然后求值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.

⑴ 求圣誕帽的側面展開圖(扇形)的圓心角的度數(shù)(精確到度);

⑵ 已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?

⑶ 現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.

⑴ 求圣誕帽的側面展開圖(扇形)的圓心角的度數(shù)(精確到度);

⑵ 已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?

⑶ 現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

 


查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(1)(解析版) 題型:解答題

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

查看答案和解析>>

同步練習冊答案