分析 連接OA,過O作OE⊥AB于E,OF⊥AC于F,根據(jù)垂徑定理求出AE、FA值,根據(jù)解直角三角形的知識(shí)求出∠OAB和∠OAC,然后分兩種情況求出∠BAC即可.
解答 解:有兩種情況:
①如圖1所示:連接OA,過O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE=$\frac{\sqrt{3}}{2}$,AF=CF=$\frac{\sqrt{2}}{2}$,
cos∠OAE=$\frac{AE}{OA}$=$\frac{\sqrt{3}}{2}$,cos∠OAF=$\frac{AF}{OA}$=$\frac{\sqrt{2}}{2}$,
∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;
②如圖2所示:
連接OA,過O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE=$\frac{\sqrt{3}}{2}$,AF=CF=$\frac{\sqrt{2}}{2}$,
cos∠OAE═$\frac{AE}{OA}$=$\frac{\sqrt{3}}{2}$,cos∠OAF=$\frac{AF}{OA}$=$\frac{\sqrt{2}}{2}$,
∴∠OAE=30°,∠OAF=45°,
∴∠BAC=45°-30°=15°;
故答案為:75°或15°.
點(diǎn)評(píng) 本題考查了特殊角的三角函數(shù)值和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是根據(jù)題意作出圖形,求出符合條件的所有情況.此題比較好,但是一道比較容易出錯(cuò)的題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a8÷a2=a4 | B. | (-m)2•(-m3)=-m5 | C. | x3+x3=x6 | D. | (a3)3=a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{0.3}$ | B. | $\sqrt{12}$ | C. | $\sqrt{6{x}^{3}}$ | D. | $\sqrt{{x}^{2}+1}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com