精英家教網 > 初中數學 > 題目詳情

【題目】已知關于的一元二次方程有兩個實數根.

為正整數,求此方程的根.

設此方程的兩個實數根為、,若,求的取值范圍.

【答案】 的取值范圍為

【解析】

1)一元二次方程有兩個實數根,則根的判別式△=b24ac0建立關于m的不等式,求出m的取值范圍后,再取正整數;

2)由根與系數的關系可得,b代入方程得y=ab2b2+2b+1=ab2b2b+1==.再由m的取值范圍確定y的取值范圍

1∵一元二次方程有兩個實數根,∴△=0,m1

m為正整數,m=1

m=1此方程為,∴此方程的根為

2∵此方程的兩個實數根為a、b,,y=ab2b2+2b+1=ab2b2b+1==

解法一m=y1).

又∵m1m=y11,y的取值范圍為y

解法二

m1,,,y的取值范圍為y

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC內接于,AB是直徑,OD∥AC,AD=OC.

(1)求證:四邊形OCAD是平行四邊形;

(2)填空:①當∠B= 時,四邊形OCAD是菱形;

②當∠B= 時,AD與相切.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)觀察猜想:

RtABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數量關系是   ,位置關系是   

(2)探究證明:

在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.

(3)拓展延伸:

如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點DDFADCE于點F,請直接寫出線段CF長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,AB=ACAD平分∠BACBC于點D,在線段AD上任取一點P(點A除外),過點PEFAB.分別交ACBC于點E和點F,作PQAC,交AB于點Q,連接QE.

1)求證:四邊形AEPQ為菱形:

2)當點P在線段EF上的什么位置時,菱形AEPQ的面積為四邊形EFBQ面積的一半?請說明理

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PEABE,PFACF,MEF中點.AM的長為x,則x的取值范圍是(  )

A. 4≥x2.4 B. 4≥x≥2.4 C. 4x2.4 D. 4x≥2.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點DBC的中點.

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙的外接圓,直線相切于點,且

)求證: 平分

)作的平分線于點,求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數式表示線段MN的長;

(3)當AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設拋物線C1y軸交于點P,點My軸右側的拋物線C2上,連接AMy軸于點k,連接KN,在平面內有一點Q,連接KQQN,當KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標.

查看答案和解析>>

同步練習冊答案