【題目】已知關于的一元二次方程有兩個實數根.
若為正整數,求此方程的根.
設此方程的兩個實數根為、,若,求的取值范圍.
【答案】 . 的取值范圍為.
【解析】
(1)一元二次方程有兩個實數根,則根的判別式△=b2﹣4ac≥0,建立關于m的不等式,求出m的取值范圍后,再取正整數;
(2)由根與系數的關系可得,把b代入方程得.∴y=ab﹣2b2+2b+1=ab﹣2(b2﹣b)+1==.再由m的取值范圍確定y的取值范圍.
(1)∵一元二次方程有兩個實數根,∴△=≥0,∴m≤1.
∵m為正整數,∴m=1.
當m=1時,此方程為,∴此方程的根為.
(2)∵此方程的兩個實數根為a、b,∴,∴y=ab﹣2b2+2b+1=ab﹣2(b2﹣b)+1==.
解法一:∵m=(y﹣1).
又∵m≤1,∴m=(y﹣1)≤1,∴y的取值范圍為y≤.
解法二:
∵m≤1,∴≤,∴≤,∴y的取值范圍為y≤.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于,AB是直徑,OD∥AC,AD=OC.
(1)求證:四邊形OCAD是平行四邊形;
(2)填空:①當∠B= 時,四邊形OCAD是菱形;
②當∠B= 時,AD與相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數量關系是 ,位置關系是 .
(2)探究證明:
在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,AB=AC,AD平分∠BAC交BC于點D,在線段AD上任取一點P(點A除外),過點P作EF∥AB.分別交AC、BC于點E和點F,作PQ∥AC,交AB于點Q,連接QE.
(1)求證:四邊形AEPQ為菱形:
(2)當點P在線段EF上的什么位置時,菱形AEPQ的面積為四邊形EFBQ面積的一半?請說明理
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點D為BC的中點.
(1)求證:△ABC為等邊三角形;
(2)求DE的長;
(3)在線段AB的延長線上是否存在一點P,使△PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數式表示線段MN的長;
(3)當△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設拋物線C1與y軸交于點P,點M在y軸右側的拋物線C2上,連接AM交y軸于點k,連接KN,在平面內有一點Q,連接KQ和QN,當KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com