【題目】如圖,已知A(﹣4,n),B2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的兩個交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線ABx軸的交點C的坐標(biāo)及△AOB的面積;

3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

【答案】1y=﹣x2;(2C(﹣20),△AOB=6,,(3)﹣4x0x2.

【解析】

1)先把B點坐標(biāo)代入代入y,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;

2)根據(jù)x軸上點的坐標(biāo)特征確定C點坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=SAOC+SBOC進(jìn)行計算;

3)觀察函數(shù)圖象得到當(dāng)﹣4x0x2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.

解:∵B2,﹣4)在反比例函數(shù)y的圖象上,

m2×(﹣4)=﹣8,

∴反比例函數(shù)解析式為:y=﹣

A(﹣4,n)代入y=﹣,

得﹣4n=﹣8,解得n2,

A點坐標(biāo)為(﹣42).

A(﹣4,2),B2,﹣4)分別代入ykx+b,

,解得,

∴一次函數(shù)的解析式為y=﹣x2

2)∵y=﹣x2,

∴當(dāng)﹣x20時,x=﹣2

∴點C的坐標(biāo)為:(﹣2,0),

AOB的面積=△AOC的面積+△COB的面積

×2×2+×2×4

6;

3)由圖象可知,當(dāng)﹣4x0x2時,一次函數(shù)的值小于反比例函數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= 與雙曲線y= (k>0,x>0)交于點A,將直線y= 向上平移4個單位長度后,與y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,若OA=3BC,則k的值為( )

A.3
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組

1)當(dāng)取何值時,方程組有兩個不相同的實數(shù)解;

2)若;、是方程組的兩個不同的實數(shù)解,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個頂點的坐標(biāo)分別是A3,3),B1,1),C4–1).

1)直接寫出點A、BC關(guān)于x軸對稱的點A1、B1C1的坐標(biāo);A1__________)、B1__________)、C1__________).

2)在圖中作出ABC關(guān)于y軸對稱的圖形A2B2C2

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正整數(shù)a可以表示為連續(xù)的兩個奇數(shù)的平方差的形式,如:83212,165232247252,……,我們則稱形如816,24這樣的正整數(shù)a奇特數(shù)

1)請寫出最小的三位奇特數(shù),并表示成連續(xù)的兩個奇數(shù)的平方差的形式;

2)求證:任意一個奇特數(shù)都是8的倍數(shù);

3)若一個三位數(shù)b奇特數(shù),其百位和個位上的數(shù)字相同,十位上的數(shù)字比個位上的數(shù)字大mm為正整數(shù)),求滿足條件的所有三位奇特數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游商品經(jīng)銷店欲購進(jìn)A、B兩種紀(jì)念品,若用380元購進(jìn)A種紀(jì)念品7件,B種紀(jì)念品8件;也可以用380元購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品6件.

1)求AB兩種紀(jì)念品的進(jìn)價分別為多少?

2)若該商店每銷售1A種紀(jì)念品可獲利5元,每銷售1B種紀(jì)念品可獲利7元,該商店準(zhǔn)備用不超過900元購進(jìn)A、B兩種紀(jì)念品40件,且這兩種紀(jì)念品全部售出時總獲利不低于216元,問應(yīng)該怎樣進(jìn)貨,才能使總獲利最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,AC平分∠DAB,∠1=2,試說明ABCD的位置關(guān)系,并予以證明;

(2)如圖,ABCDAB的下方兩點E、F滿足:BF平分∠ABEDF平分∠CDE,若∠DFB=20°,∠CDE=70°,求∠ABE的度數(shù);

(3)在前面的條件下,若PBE上一點,GCD上任一點,PQ平分∠BPG,PQGNGM平分∠DGP,下列結(jié)論:①∠DGP-MGN的值不變;②∠MGN的度數(shù)不變,可以證明只有一個是正確的,請你作出正確的選擇并求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.

1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.如圖1中的BD和CE就是兩條三分線.

(1)請你在圖2中畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù)(畫出一種即可);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,請在圖3上畫出示意圖;
(3)在(2)的前提下,設(shè)∠C=x°,試求出x所有可能的值.

查看答案和解析>>

同步練習(xí)冊答案