【題目】已知a2+3a=1,則代數(shù)式2a2+6a-1的值為( )
A. 1 B. 2 C. 3 D. 0
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠A和∠B的兩邊分別平行,且∠A比∠B的3倍少20°,則∠B的度數(shù)為( )
A. 10° B. 70° C. 10°或50° D. 70°或50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚運載火箭從地面L處發(fā)射,當(dāng)火箭到達(dá)A點時,從位于距發(fā)射架底部4km處的地面雷達(dá)站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達(dá)B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結(jié)果取小數(shù)點后兩位)?
(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,
sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)如圖1,若BC=3,AB=5,則ctanB= ;
(2)ctan60°= ;
(3)如圖2,已知:△ABC中,∠B是銳角,ctan C=2,AB=10,BC=20,試求∠B的余弦cosB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀材料,再結(jié)合要求回答問題.
【問題情景】
如圖①:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分別是BC,CD上的點,且線段BE,EF,FD滿足BE+FD=EF.試探究圖中∠EAF與∠BAD之間的數(shù)量關(guān)系.
【初步思考】
小王同學(xué)探究此問題的方法是:延長FD到G,使DG=BE,連結(jié)AG.
先證明△ABE≌△ADG,再證明△AEF≌△AGF,
可得出∠EAF與∠BAD之間的數(shù)量關(guān)系是 .
【探索延伸】
若將問題情景中條件“∠B=∠ADC=90°”改為“∠B+∠D=180°”(如圖②),其余條件不變,請判斷上述數(shù)量關(guān)系是否仍然成立,若成立,請證明;若不成立,請說明理由.
【實際應(yīng)用】
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn),1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處且相距210海里.試求此時兩艦艇的位置與指揮中心(O處)形成的夾角∠EOF的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣t3×(﹣t)4×(﹣t)5
(2)(3a3)3+a3×a6﹣3a9
(3)
(4)(p﹣q)4÷(q﹣p)3×(p﹣q)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點D,E,F(xiàn).
(1)求證:∠F+∠FEC=2∠A;
(2)過B點作BM∥AC交FD于點M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com