【題目】如圖,在平而直角坐標系中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點.正方形ABCD的項點C、D在第一象限,頂點D在反比例函數(shù)yk≠0)的圖象上.若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖象上,則n的值是( 。

A.2B.3C.4D.5

【答案】B

【解析】

由一次函數(shù)的關(guān)系式可求出與x軸,y軸的交點坐標,即求出OA、OB的長,由正方形的性質(zhì)、三角形全等可以求出DE、AE、CF、BF的長,進而求出G的坐標,最后求出CG的長就是n的值.

解:過D、C分別作DE⊥x軸,CF⊥y軸,垂足分別為E、FCF交反比例函數(shù)的圖象于G

x0y0分別代入y=﹣4x+4得:y4x1,

∴A10),B0,4),

∴OA1OB4;

ABCD是正方形,

易證△AOB≌△DEA≌△BCF AAS),

∴DEBFOA1,AECFOB4,

∴D5,1),F0,5),

D5,1),代入y得,k5,

y5代入y得,x1,即FG1

CGCFFG413,即n3,

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,六個小朋友圍成一圈(面向圈內(nèi))做傳球游戲,規(guī)定:球不得傳給自己,也不得傳給左手邊的人.若游戲中傳球和接球都沒有失誤.

若由開始一次傳球,則接到球的概率分別是 、 ;

若增加限制條件:也不得傳給右手邊的人”.現(xiàn)在球已傳到手上,在下面的樹狀圖2

畫出兩次傳球的全部可能情況,并求出球又傳到手上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過A(﹣1,0),且頂點坐標為B(0,1).

(1)求拋物線M的函數(shù)表達式;

(2)設(shè)Ft,0)為x軸正半軸上一點,將拋物線M繞點F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點B1的坐標為   ;

當拋物線M1與線段AB有公共點時,結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,AB=ACBC⊙O于點DAC⊙O于點E∠BAC=45°,給出以下五個結(jié)論:①∠EBC=22.5°;②BD=DC③AE=2EC;劣弧是劣弧2倍;⑤AE=BC,其中正確的序號是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,PCD邊上一點(DPCP),∠APB90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點BBNMPDC于點N,連接AC,分別交PM,PB于點E,F.現(xiàn)有以下結(jié)論:

連接DD',則AP垂直平分DD'

四邊形PMBN是菱形;

AD2DPPC;

AD2DP,則;

其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB6,M為對角線BD上任意一點(不與BD重合),連接CM,過點MMNCM,交AB(或AB的延長線)于點N,連接CN

感知:如圖①,當MBD的中點時,易證CMMN.(不用證明)

探究:如圖②,點M為對角線BD上任一點(不與BD重合).請?zhí)骄?/span>MNCM的數(shù)量關(guān)系,并證明你的結(jié)論.

應(yīng)用:(1)直接寫出MNC的面積S的取值范圍   ;

2)若DMDB35,則ANBN的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是⊙的弦,于點,過點的直線交的延長線于點,且是⊙的切線.

1)判斷的形狀,并說明理由;

2)若,求的長;

3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料.

(1)設(shè)計一種砌法,使矩形花園的面積為300m2

(2)BC為何值時,矩形ABCD的面積有最大值?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________

查看答案和解析>>

同步練習冊答案