【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A(﹣1,m),B(n,-1)兩點.
(1)求出這個一次函數(shù)的表達式;
(2)求△OAB的面積.
【答案】(1)y=﹣x+1;(2)
【解析】
(1)先把A(﹣1,m),B(n,﹣1)分別代入反比例函數(shù)解析式可求出m、n,于是確定A點坐標為(﹣1,2),B點坐標為(2,﹣1),然后利用待定系數(shù)法求直線AB的解析式;
(2)設直線AB交y軸于P點,先確定P點坐標,然后利用S△OAB=S△AOP+S△BOP和三角形面積公式進行計算.
(1)把A(﹣1,m),B(n,﹣1)分別代入y得﹣m=﹣2,﹣n=﹣2,解得:m=2,n=2,
所以A點坐標為(﹣1,2),B點坐標為(2,﹣1),
把A(﹣1,2),B(2,﹣1)代入y=kx+b得:,解得:,
所以這個一次函數(shù)的表達式為y=﹣x+1;
(2)設直線AB交y軸于P點,如圖,
當x=0時,y=1,所以P點坐標為(0,1),
所以S△OAB=S△AOP+S△BOP1×11×2.
科目:初中數(shù)學 來源: 題型:
【題目】“特色福州,美好生活”,福州舉行金色秋天旅游活動.明明和華華同學分析網(wǎng)上關于旅游活動的信息,發(fā)現(xiàn)最具特色的景點有:①鼓嶺、②森林公園、③青云山.他們準備周日下午去參觀游覽,各自在這三中個景點任選一個,每個景點被選中的可能性相同.
(1)明明同學在三個備選景點中選中鼓嶺的概率是 .
(2)用樹狀圖或列表法求出明明和華華他們選中不同景點參觀的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校“綜合實踐”社團,計劃利用長的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個矩形試驗田,墻的長度為.
(1)能否圍成總面積為的試驗田?若能,求出的長度;若不能,說明理由;
(2)能否圍成總面積為的試驗田?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
閱讀理解:數(shù)學興趣小組在探究如何求的值,經(jīng)過思考、討論、交流,得到以下思路:
如圖1,作,使,,延長至點,使,連接.
設,則,..
請解決下列問題:
(1)類比求解:求出的值;
(2)問題解決:如圖2,某住宅樓的后面有一建筑物,當光線與地面的夾角是時,住宅在建筑物的墻上留下高的影子;而當光線與地面的夾角是時,住宅樓頂在地面上的影子與墻角有的距離(,,在一條直線上).求住宅樓的高度(結(jié)果保留根號);
(3)探究發(fā)現(xiàn):如圖3,小明用硬紙片做了兩個直角三角形,在中,,,;在中,,,.他將的斜邊與的斜邊重合在一起,并將沿方向移動.在移動過程中,,兩點始終在邊上(移動開始時點與點重合).探究在移動過程中,是否存在某個位置,使得?如果存在,直接寫出的長度;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖,在中,CD為角平分線,,,求證:CD為的完美分割線.
(2)如圖,中,,,CD是的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長.
(3)在中,,CD是的完美分割線,且為等腰三角形,直接寫出∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解本校學生喜愛的球類運動,在本校范圍內(nèi)隨機抽查了部分學生,將收集的數(shù)據(jù)統(tǒng)計整理,繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)本次一共調(diào)查了________名學生;
(2)補全條形統(tǒng)計圖;
(3) “足球”在扇形統(tǒng)計圖中所占圓心角的度數(shù)為________;
(4)若已知該校有1000名學生,請你根據(jù)調(diào)查的結(jié)果估計愛好“足球”和“排球”的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P到圖形Ω(可以是線段、三角形、圓或不規(guī)則圖形等)的距離是指:點P與圖形Ω中所有點連接的線段中最短線段的長度.如圖①中的兩個虛線段PQ的長度都表示點P到圖形Ω的距離.
如圖②,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為,點P從原點出發(fā),以每秒1個單位長度的速度向x軸的正方向運動了t秒.
(1)當t=0時,求點P到△ABC的距離;
(2)當點P到△ABC的距離等于線段AP的長度時,求t的范圍;
(3)當點P到△ABC的距離大于時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠A=30°,∠B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com