【題目】如圖所示,數(shù)學(xué)小組發(fā)現(xiàn)米高旗桿的影子落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高米,測得其影長為米,同時測得的長為米,的長為米,測得小橋拱高(弧的中點到弦的距離,即的長)為米,則小橋所在圓的半徑為(

A. B. 5 C. D. 6

【答案】B

【解析】

小橋所在圓的圓心為點O,連結(jié)OG,設(shè)⊙O的半徑為r米.先利用平行投影的性質(zhì)和相似的性質(zhì)得到,于是可求出GH=8米,再根據(jù)垂徑定理得到點O在直線MN上,GM=HM=GH=4米,然后根據(jù)勾股定理得到r2=(r2)2+16,再解方程即可.

解答:解:如圖,設(shè)小橋的圓心為O,連接OM、OG.設(shè)小橋所在圓的半徑為r米.

,

解得EF=12,

GH=1231=8(米).

MN為弧GH的中點到弦GH的距離,

∴點O在直線MN上,GM=HM=GH=4米.

RtOGM中,由勾股定理得:OG2=OM2+GM2

r2=(r2)2+16,

解得:r=5.

答:小橋所在圓的半徑為5米.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy ,ABC 的三個頂點的坐標(biāo)分別是 A(2,3),B(1,0),C(1,2).

(1)在圖中畫出△ABC 關(guān)于 y 軸對稱的

(2)直接寫出 三點的坐標(biāo):

( ), ( ), ( );

(3)如果要使以 BC、D 為頂點的三角形與△ABC 全等,直接寫出所有符合條件的點 D 坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過、兩點.

求拋物線的解析式和頂點坐標(biāo);

當(dāng)時,求的取值范圍;

為拋物線上一點,若,求出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一幅長,寬的風(fēng)景畫的四周外圍鑲上一條寬度相同的金色紙邊,制成一幅掛圖,如果要求風(fēng)景畫的面積是整個掛圖的.若設(shè)金色紙邊的寬為.根據(jù)題意列方程,并整理得(

A. x2-65x+350=0 B. x2+65x-350=0 C. x2+65x-225=0 D. x2-65x+225=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形中,,已知,,動點點出發(fā),沿線段向點作勻速運動:動點從點出發(fā),沿線段向點作勻速運動.過點垂直于的射線交于點,交于點、兩點同時出發(fā),速度都為每秒個單位長度.當(dāng)點運動到點,、兩點同時停止運動.設(shè)點運動的時問為秒.

________,________.(用的代數(shù)式表示);

當(dāng)為何值時,四邊形構(gòu)成平行四邊形?

為等腰三角形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,分別是,的中點,上的點,連接、,若,,,則圖中陰影部分的面積為( )

A. 1cm2 B. 1.5cm2 C. 2cm2 D. 3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使PAB的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,,兩條對角線相交于點.以、為鄰邊作第個平行四邊形,對角線相交于點;再以為鄰邊作第個平行四邊形,對角線相交于點;再以、為鄰邊作第個平行四邊形依此類推.

求矩形的面積;

求第個平行四邊形,第個平行四邊形和第個平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2.

1)上述操作能驗證的等式是________(填ABC

Aa2-2ab+b2=a-b2

Ba2-b2=a+b)(a-b

Ca2+ab=aa+b)  

2)應(yīng)用你從(1)中選出的等式,完成下列各題:

①已知x2-4y2=12,x+2y=4,x-2y的值

②計算:(1-)(1-)(1-1-)(1-

查看答案和解析>>

同步練習(xí)冊答案