(2000•福建)已知:如圖,在△ABC中,BE、CF分別是AC、AB兩條邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連AD、AG.求證:AG=AD.

【答案】分析:三角形全等條件中必須是三個元素,本題已經(jīng)有兩條對應邊相等,只要再找到它們的夾角相等就可以了.
解答:證明:∵BE、CF分別是AC、AB兩條邊上的高,
∴∠ABD+∠BAC=90°,
∠GCA+∠BAC=90°,
∴∠GCA=∠ABD,
在△GCA和△ABD中,
,
∴△GCA≌△ABD.
∴AG=AD.
點評:本題重點考查了三角形全等的判定定理中的SAS定理的運用,要在圖形上找出全等的三角形,讓尋找條件進行證明.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•福建)已知拋物線y=x2+px+q與x軸相交于不同的兩點A(x1,0)、B(x2,0)(B在A的右邊),又拋物線與y軸相交于C點,且滿足
(1)求證:4p+5q=0;
(2)問是否存在一個圓O',使它經(jīng)過A、B兩點,且與y軸相切于C點?若存在,試確定此時拋物線的解析式及圓心O'的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2000•福建)已知反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象都經(jīng)過點(-2,-1),且在x=3時這兩個函數(shù)值相等,求這兩個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年福建省三市一區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2000•福建)已知拋物線y=x2+px+q與x軸相交于不同的兩點A(x1,0)、B(x2,0)(B在A的右邊),又拋物線與y軸相交于C點,且滿足
(1)求證:4p+5q=0;
(2)問是否存在一個圓O',使它經(jīng)過A、B兩點,且與y軸相切于C點?若存在,試確定此時拋物線的解析式及圓心O'的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年福建省三市一區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2000•福建)已知反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象都經(jīng)過點(-2,-1),且在x=3時這兩個函數(shù)值相等,求這兩個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:解答題

(2000•福建)已知:如圖,AB為⊙O的直徑,AO為⊙O'的直徑,⊙O的弦AC交⊙O'于D點,OC和BD相交于E點,AB=4,∠CAB=30°.求CE、DE的長.

查看答案和解析>>

同步練習冊答案