【題目】如圖,在邊長為a的正方形中挖掉一個邊長為bba)的小正方形,把余下的部分剪拼成一個長方形.通過計算陰影部分的面積,驗證了一個等式,這個等式是(  )

A. a2b2=ab)(ab B. ab2=a22abb2

C. ab2=a22abb2 D. a2ab=aab

【答案】A

【解析】

這個圖形變換可以用來證明平方差公式:已知在左圖中,大正方形減小正方形剩下的部分面積為a2-b2;因為拼成的長方形的長為(a+b),寬為(a-b),根據(jù)“長方形的面積=長×寬”代入為:(a+b)×(a-b),因為面積相等,進(jìn)而得出結(jié)論.

由圖可知,大正方形減小正方形剩下的部分面積為a2-b2;

拼成的長方形的面積:(a+b)×(a-b),

所以得出:a2-b2=(a+b)(a-b),

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果AB、C三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點,那么M,N兩點之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于B、C兩點,且D、E分別為頂點.則下列結(jié)論: ①a= ;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時,y1>y2
其中正確結(jié)論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,已知ABC三個定點坐標(biāo)分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)畫出ABC關(guān)于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標(biāo);

(2)畫出點C關(guān)于y軸的對稱點C2,連接C1C2,CC2,C1C,△CC1C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y= x﹣b與y= x﹣1的圖象之間的距離等于3,則b的值為(
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線y= (k>0)經(jīng)過Rt△OAB的直角邊AB的中點C,與斜邊OB相交于點D,若OD=1,則BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為A(6,0)、B(0,2),以AB為斜邊在右上方作Rt△ABC.設(shè)點C坐標(biāo)為(x,y),則(x+y)的最大值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一棵大樹在一次強臺風(fēng)中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關(guān)系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以圖1(以O為圓心,半徑1 的半圓)作為基本圖形,分別經(jīng)歷如下變換能得到圖2的序號是 (多填或錯填得0,少填酌情給分)

只要向右平移1個 單位;

先以直線AB為對稱軸進(jìn)行對稱變換,再向右平移1個單位;

先繞著O旋轉(zhuǎn)180°,再向右平移1個單位;

只要繞著某點旋轉(zhuǎn)180°.

查看答案和解析>>

同步練習(xí)冊答案