某商人將進(jìn)貨單價(jià)為8元的商品,按每件10元出售時(shí),每天可銷售100件.現(xiàn)在他想采取提高售出價(jià)的辦法來(lái)增加利潤(rùn),已知這種商品每件提價(jià)1元時(shí),日銷售量就減少10件.問(wèn):他的想法能否實(shí)現(xiàn)?如果能,他把價(jià)格定為多少元時(shí),才能使每天的獲利最大?每天的最大利潤(rùn)是多少?如果不能,請(qǐng)說(shuō)明理由.

解:設(shè)每個(gè)提價(jià)x元(x≥0),利潤(rùn)為y元;
日銷量(100-10x)個(gè);
每天銷售總額為(10+x)(100-10x)元;
進(jìn)貨總額為8(100-10x)元.
顯然100-10x>0,x<10.
y=(10+x)(100-10x)-8(100-10x),
=-10x2+80x+200,
=-10(x-4)2+360(0≤x<10),
當(dāng)x=4時(shí),y取得最大值360,
故銷售單價(jià)為14元,最大利潤(rùn)為360元.
分析:設(shè)每個(gè)提價(jià)x元(x≥0),利潤(rùn)為y元,根據(jù)每天的利潤(rùn)=每天銷售總額-進(jìn)貨總額建立函數(shù)關(guān)系,然后根據(jù)二次函數(shù)在閉區(qū)間上求值域的方法求出函數(shù)的最值.
點(diǎn)評(píng):本題主要考查了根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型,以及二次函數(shù)的性質(zhì),同時(shí)考查了建模的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)某商人將進(jìn)貨單價(jià)為8元的商品,按每件10元出售時(shí),每天可銷售100件.現(xiàn)在他想采取提高售出價(jià)的辦法來(lái)增加利潤(rùn),已知這種商品每件提價(jià)1元時(shí),日銷售量就減少10件.問(wèn):他的想法能否實(shí)現(xiàn)?如果能,他把價(jià)格定為多少元時(shí),才能使每天的獲利最大?每天的最大利潤(rùn)是多少?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商人將進(jìn)貨單價(jià)為8元的某種商品按10元銷售時(shí),每天可賣出100件.現(xiàn)在他采用提高售價(jià)的辦法增加利潤(rùn),已知這種商品銷售單價(jià)每漲1元,銷售量就減少10件,那么他將售價(jià)每個(gè)定為
14
14
元時(shí),才能使每天所賺的利潤(rùn)最大,每天最大利潤(rùn)是
360
360
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某商人將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)在他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤(rùn).已知這種商品的銷售價(jià)每提高1元,其銷售量就要減少5件.
(1)寫出銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系;
(2)為使每天銷售該商品所賺利潤(rùn)最多,該商人應(yīng)如何制定銷售價(jià)格和組織進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商人將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)在他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤(rùn).已知這種商品的銷售價(jià)每提高1元,其銷售量就要減少5件.
(1)寫出銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系;
(2)為使每天銷售該商品所賺利潤(rùn)最多,該商人應(yīng)如何制定銷售價(jià)格和組織進(jìn)貨?

查看答案和解析>>

同步練習(xí)冊(cè)答案