【題目】如圖,在BCE中,點A是邊BE上一點,以AB為直徑的⊙OCE相切于點D,ADOC,點FOC與⊙O的交點,連接AF.

1)求證:CB是⊙O的切線;

2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

【答案】(1)詳見解析;(2.

【解析】試題分析:(1)欲證明CB⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問題.

2)首先證明S=S扇形ODF,然后利用扇形面積公式計算即可.

試題解析:(1)證明:連接OD,與AF相交于點G∵CE⊙O相切于點D,∴OD⊥CE,∴∠CDO=90°∵AD∥OC,∴∠ADO=∠1,∠DAO=∠2,∵OA=OD∴∠ADO=∠DAO,∴∠1=∠2,在△CDO△CBO中,∵CO=CO∠1=∠2,OD=OC∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB⊙O的切線.

2)由(1)可知3=BCO1=2,∵∠ECB=60°,∴∠3=ECB=30°,∴∠1=2=60°,∴∠4=60°,OA=OD∴△OAD是等邊三角形,AD=OD=OF∵∠1=ADO,在ADGFOG中,∵∠1=ADG,FGO=AGD,AD=OF,∴△ADG≌△FOG,SADG=SFOGAB=6,∴⊙O的半徑r=3,S=S扇形ODF==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.

(2)將圖1中的三角板繞點O以每秒6°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結(jié)果).
(3)將圖1中的三角板繞點O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,求∠AOM﹣∠NOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是根據(jù)某公園的平面示意圖建立的平面直角坐標(biāo)系,公園的入口位于坐標(biāo)原點O,古塔位于點A(400,300),從古塔出發(fā)沿射線OA方向前行300m是盆景園B,從盆景園B向左轉(zhuǎn)90°后直行400m到達(dá)梅花閣C,則點C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:3a2a2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生某月有零花錢a元,其支出情況如圖所示,那么下列說法不正確的是(
A.該學(xué)生捐贈款為0.6a元
B.捐贈款所對應(yīng)的圓心角為240°
C.捐贈款是購書款的2倍
D.其他消費占10%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=x+6,下列結(jié)論錯誤的是(
A.函數(shù)值隨自變量增大而增大
B.函數(shù)圖象與x軸正方向成45°角
C.函數(shù)圖象不經(jīng)過第四象限
D.函數(shù)圖象與x軸交點坐標(biāo)是(0,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組長度的線段能構(gòu)成三角形的是(

A. 1.5cm 3.9cm 2.3cm B. 3.5cm 7.1cm 3.6cm

C. 6cm 1cm 6cm D. 4cm 10cm4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D、C兩點分別落在D′、C′的位置,并利用量角器量得∠EFB=66°,則∠AED′等于度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算2x(3x2+1),正確的結(jié)果是(  )
A.5x3+2x
B.6x3+1
C.6x3+2x
D.6x2+2x

查看答案和解析>>

同步練習(xí)冊答案