【題目】在直角坐標系中,已知點A(﹣2,0),B(0,4),C(0,3),過點C作直線交x軸于點D,使得以D,O,C為頂點的三角形與△AOB相似,求點D的坐標.
【答案】解:過C點作AB的平行線,交x軸于D1點, 則△DOC∽△AOB, ,
即 ,解得OD= ,
∴D1(﹣ ,0),根據(jù)對稱得D2( ,0);
由△COD∽△AOB,得D3(﹣6,0),根據(jù)對稱得D4(6,0).
【解析】過C點作AB的平行線,交x軸于D1點,由平行得相似可知D1點符合題意,根據(jù)對稱得D2點;改變相似三角形的對應關系得D3點,利用對稱得D4點,都滿足題意.
【考點精析】認真審題,首先需要了解相似三角形的判定(相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AE是弦,直線CG與⊙O相切于點C,CG∥AE,CG與BA的延長線交于點G,過點C作CD⊥AB于點D,交AE于點F.
(1)求證: ;
(2)若∠EAB=30°,CF=a,寫出求四邊形GAFC周長的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓O與AD,AC分別交于點E,F(xiàn),且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關系,并證明你的結論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC與△ADE中,ABED=AEBC,要使△ABC與△ADE相似,還需要添加一個條件,這個條件是(只加一個即可)并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有三張背面完全相同的紙牌A,B,C,其中正面分別畫有三種不同的幾何圖形,小華將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張,請你用畫樹狀圖或列表的方法,求摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在邊CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF⊥AE,交BC于點F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE∽△ECF;
(3)應用:如圖③,若EF交AB邊于點F,其他條件不變,且△PEF的面積是3,則AP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點O為圓心所作的半圓分別與AC、BC相切于點D,E,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足為P.
(1)請作出Rt△ABC的外接圓⊙O;(保留作圖痕跡,不寫作法)
(2)點D在⊙O上嗎?說明理由;
(3)試說明:AC平分∠BAD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com