【題目】如圖,在平面直角坐標系中,直線分別交x軸、y軸于A,B兩點,經(jīng)過A,B兩點的拋物線與x軸的正半軸相交于點.
(1)求拋物線的解析式;
(2)若P為線段AB上一點,,求AP的長;
(3)在(2)的條件下,設(shè)M是y軸上一點,試問:拋物線上是否存在點N,使得以A,P,M,N為頂點的四邊形為平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.
【答案】(1);(2);(3)存在,點N的坐標為(,3) 或(,)
【解析】
(1)利用直線與y軸的交點求得點B的坐標,然后把點B、C的坐標代入,即可求解;
(2)先求得點A的坐標,證得△PAO△CAB,利用對應(yīng)邊成比例即可求解;
(3)分點N在AB的上方或下方兩種情況進行討論,根據(jù)平行四邊形的性質(zhì)和等腰直角三角形的性質(zhì),利用三角形全等,即可求解.
(1)令,則,
∴點B的坐標為(0,3),
拋物線經(jīng)過點B (0,3),C (1,0),
∴,解得,
∴拋物線的解析式為:;
(2)令,則,
解得:,
∴點A的坐標為(,0),
∴OA=3,OB=3,OC=1,
,
∵,且,
∴△PAO△CAB,
∴,即,
∴;
(3)存在,
過點P作PD⊥x軸于點D,
∵OA=3,OB=3,∠AOB=,
∴∠BAO=∠ABO=,
∴△PAD為等腰直角三角形,
∵,
∴PD=AD=2,
∴點P的坐標為(,2),
當N在AB的上方時,過點N作NE⊥y軸于點E,如圖,
∵四邊形APMN為平行四邊形,
∴NM∥AP,NM=AP=,
∴∠NME=∠ABO=,
∴△NME為等腰直角三角形,
∴Rt△NMERt△APD,
∴NE=AD=2,
當時,,
∴點N的坐標為(,3),
當N在AB的下方時,過點N作NF⊥y軸于點F,如圖,
同理可得:Rt△NMFRt△APD,
∴NF=AD=2,
當時,,
∴點N的坐標為(,),
綜上,點N的坐標為(,3) 或(,) .
科目:初中數(shù)學 來源: 題型:
【題目】合理飲食對學生的身體、智力發(fā)育和健康起到了極其重要的作用,只有葷食和素食的合理搭配,才能強化初中生的身體素質(zhì),某校為了解學生的體質(zhì)健康狀況,以便食堂為學生提供合理膳食,對本校七年級、八年級學生的體質(zhì)健康狀況進行了調(diào)查,過程如下:
收集數(shù)據(jù):
從七、八年級兩個年級中各抽取名學生,進行了體質(zhì)健康測試,測試成績(百分制)如下:
七年級:
八年級:
整理數(shù)據(jù):
年級 | ||||
七年級 | ||||
八年級 |
(說明:為優(yōu)秀,為良好,為及格,為不及格)
分析數(shù)據(jù):
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | |||
八年級 |
(1)表格中 , , ,
(2)比較這兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個年級的體質(zhì)健康成績比較好?請說明理由
(3)若七年級共有名學生,請估計七年級體質(zhì)健康成績優(yōu)秀的學生人數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,動點E從點A出發(fā)向點D運動,同時動點F從點D出發(fā)向點C運動,點E、F運動的速度相同,當它們到達各自終點時停止運動,運動過程中線段AF、BE相交于點P,M是線段BC上任意一點,則MD+MP的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為斜邊的中線,過點D作于點E,延長至點F,使,連接,點G在線段上,連接,且.下列結(jié)論:①;②四邊形是平行四邊形;③;④.其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解同學們最喜歡一年四季中的哪個季節(jié),數(shù)學社在全校隨機抽取部分同學進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,得到如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息,解答下列問題:
(1)此次調(diào)查一共隨機抽取了________名同學;扇形統(tǒng)計圖中,“春季”所對應(yīng)的扇形的圓心角的度數(shù)為________;
(2)若該學校有1500名同學,請估計該校最喜歡冬季的同學的人數(shù);
(3)現(xiàn)從最喜歡夏季的3名同學A,B,C中,隨機選兩名同學去參加學校組織的“我愛夏天”演講比賽,請用列表或畫樹狀圖的方法求恰好選到A,B去參加比賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[問題解答]
兩個城鎮(zhèn)與一條公路位置如圖①所示.現(xiàn)電信部門需在公路上修建一座信號發(fā)射塔要求發(fā)射塔到兩個城鎮(zhèn)與的距離之和最短.
解:點作關(guān)于直線的對稱點連結(jié),
與直線的交點即為所求的點.
點關(guān)于直線對稱,
直線垂直平分
點即為所求的點。(兩點之間線段最短)
請根據(jù)以上問題解答,完成下列問題.
[方法運用]如圖②,在正方形中,點在邊上,點在對角線AC上,
(1)當點是邊的中點時,則的最小值為 ;
(2)若求周長的最小值.
[拓展提升]如圖③,在中,,AD平分交于點,點分別在上,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃在每個生產(chǎn)周期內(nèi)生產(chǎn)并銷售完某型設(shè)備,設(shè)備的生產(chǎn)成本為10萬元/件(1)如圖,設(shè)第x(0<x≤20)個生產(chǎn)周期設(shè)備售價z萬元/件,z與x之間的關(guān)系用圖中的函數(shù)圖象表示,求z關(guān)于x的函數(shù)解析式(寫出x的范圍).
(2)設(shè)第x個生產(chǎn)周期生產(chǎn)并銷售的設(shè)備為y件,y與x滿足關(guān)系式y=5x+40(0<x≤20).在(1)的條件下,工廠在第幾個生產(chǎn)周期創(chuàng)造的利潤最大?最大為多少萬元?(利潤=收入-成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與兩條坐標軸分別交于,,三點.其中,且.
(1)求該拋物線的解析式;
(2)點是軸上一點,拋物線上是否存在點,使得以點,,,為頂點,以為邊的四邊形是平行四邊形?若存在,求出點的坐標;若不存在,請說明理由;
(3)如圖2,點,分別是線段,上的動點,連接,,當時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是的外接圓,AD為的直徑,,垂足為E,連接BO,延長BO交AC于點F.
(1)如圖1,求證:;
(2)如圖2,過點D作,交于點G,點H為GD的中點,連接OH,求證:;
(3)如圖3,在(2)的條件下,連接CG,若的面積為,求線段CG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com