【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
求證:(1)△ACE≌△BCD;(2).
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)本題要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,則DC=EC,AC=BC,∠ACB=∠ECD,又因為兩角有一個公共的角∠ACD,所以∠BCD=∠ACE,根據(jù)SAS得出△ACE≌△BCD.
(2)由(1)的論證結果得出∠DAE=90°,AE=DB,從而求出AD2+DB2=DE2.
(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.
∵BC=AC,DC=EC,∴△ACE≌△BCD.
(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.
∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2,∴AD2+DB2=DE2.
科目:初中數(shù)學 來源: 題型:
【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項目,再在立定跳遠、跳繩、實心球擲遠、籃球運球和足球運球中選擇兩項;女生800米跑為必選項目,再在立定跳遠、跳繩、仰臥起坐、籃球運球和足球運球中選擇兩項某校對得分超過40分的20位學生的成績m進行統(tǒng)計,結果如頻數(shù)分布表所示:
求a的值;
若用扇形圖來描述,求分數(shù)在內所對應的扇形圖的圓心角的大。
若男生小明在剛開始訓練時在選考項目隨機選擇兩項進行訓練,試用列舉法求小明選擇”跳繩籃球運球“的概率提示:可以用字母表示各個項目
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( )
A. 7 B. 8 C. 7 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB,CD都是的直徑,連接DB,過點C的切線交DB的延長線于點E.
如圖1,求證:;
如圖2,過點A作交EC的延長線于點F,過點D作,垂足為點G,求證:;
如圖3,在的條件下,當時,在外取一點H,連接CH、DH分別交于點M、N,且,點P在HD的延長線上,連接PO并延長交CM于點Q,若,,,求線段HM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在等邊的邊上,,射線于點,點是射線上一動點,點是線段上一動點,當的值最小時,,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是邊長為3的等邊三角形,以BC為底邊作一個頂角為120等腰△BDC.點M、點N分別是AB邊與AC邊上的點,并且滿足∠MDN=60
(1)如圖1,當點D在△ABC外部時,求證:BM+CN=MN;
(2)當點D在△ABC內部時,其它條件不變,請在圖2中補全圖形,并直接寫出△AMN的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的頂點A,B在x軸上,點A在點B的左側,點D在y軸的正半軸上,∠BAD=60°,點A的坐標為(-2,0).
(1)求線段AD所在直線的表達式;
(2)動點P從點A出發(fā),以每秒1個單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設運動時間為t秒.求t為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產的一種健身產品在市場上受到普遍歡迎,每年可在國內、國外市場上全部售完,該公司的年產量為6千件,若在國內市場銷售,平均每件產品的利潤(元)與國內銷售數(shù)量(千件)的關系為:若在國外銷售,平均每件產品的利潤(元)與國外的銷售數(shù)量t(千件)的關系為:
(1)用的代數(shù)式表示t為:t= ;當0<≤4時,與的函數(shù)關系式為:= ;當4≤< 時,=100;
(2)求每年該公司銷售這種健身產品的總利潤W(千元)與國內的銷售數(shù)量x(千件)的函數(shù)關系式,并指出x的取值范圍;
(3)該公司每年國內、國外的銷量各為多少時,可使公司每年的總利潤最大?最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com