(2012•樂山)如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
分析:(1)關(guān)于軸對稱的兩個圖形,各對應(yīng)點的連線被對稱軸垂直平分.做BM⊥直線l于點M,并延長到B1,使B1M=BM,同法得到A,C的對應(yīng)點A1,C1,連接相鄰兩點即可得到所求的圖形;
(2)由圖得四邊形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根據(jù)梯形的面積公式進(jìn)行計算即可.
解答:解(1)如圖,△A1B1C1 是△ABC關(guān)于直線l的對稱圖形.

(2)由圖得四邊形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.
∴S四邊形BB1C1C=
1
2
(BB1+CC1)×4

=
1
2
(4+2)×4
=12.
點評:此題主要考查了作軸對稱變換,在畫一個圖形的軸對稱圖形時,也是先從確定一些特殊的對稱點開始的,一般的方法是:
①由已知點出發(fā)向所給直線作垂線,并確定垂足;
②直線的另一側(cè),以垂足為一端點,作一條線段使之等于已知點和垂足之間的線段的長,得到線段的另一端點,即為對稱點;
③連接這些對稱點,就得到原圖形的軸對稱圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,A、B兩點在數(shù)軸上表示的數(shù)分別為a、b,下列式子成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,有下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為
2

其中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,⊙O是四邊形ABCD的內(nèi)切圓,E、F、G、H是切點,點P是優(yōu)弧
EFH
上異于E、H的點.若∠A=50°,則∠EPH=
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樂山)如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距20
3
千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):
2
≈1.414
3
≈1.732

查看答案和解析>>

同步練習(xí)冊答案