【題目】P是拋物線y=x2-4x+5上一點,過點P作PM⊥x軸,PN⊥y軸,垂足分別是M,N,則PM+PN的最小值是( )
A.3B.C.D.5
【答案】B
【解析】
設點P的坐標為(m, m2-4m+5) ,構造出PM+ PN的值與m的函數關系,利用二次函數的性質解決問題即可.
拋物線y=x2 -4x+5,△=16-20=-4<0,可知拋物線的值恒為正,
設P(m,m2-4m+5) ,
則PM=|m2 - 4m+5|,PN=|m|
當m<0時, PM+ PN=|m2- 4m+5|+|m|= m2 - 4m+5-m= m2-5m+ 5=,
此時m=不符合m<0;
當m=0時,y=5,PM+ PM的值是5;
當m>0時,PM+ PN=|m2 - 4m+ 5|+|m|=m2 -4m+5+m=m2-3m + 5=,
所以當m=時, PM+ PM的最小值為,
綜上,PM+ PM的最小值是
故答案為:B
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,點E是AD的中點,連接CE,并延長CE與BA的延長線交于點F, 若∠BCF=90°,則∠D的度數為( )
A.60°B.55°C.45°D.40°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮在研究矩形的面積S與矩形的邊長x,y之間的關系時,得到下表數據:
x | 0.5 | 1 | 1.5 | 2 | 3 | 4 | 6 | 12 |
y | 12 | 6 | ■ | 3 | 2 | 1.5 | 1 | 0.5 |
結果發(fā)現一個數據被墨水涂黑了.
(1)被墨水涂黑的數據為_________;
(2)y與x的函數關系式為_________,且y隨x的增大而_________;
(3)如圖是小亮畫出的y關于x的函數圖象,點B、E均在該函數的圖象上,其中矩形的面積記為,矩形的面積記為,請判斷與的大小關系,并說明理由;
(4)在(3)的條件下,交于點G,反比例函數的圖象經過點G交于點H,連接、,則四邊形的面積為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD是⊙O的直徑,OB⊥CD交⊙O于點B,連接CB,AB是⊙O的弦,AB交CD于點E,F是CD的延長線上一點且AF=EF.
(1)判斷AF和⊙O的位置關系并說明理由.
(2)若∠ABC=60°,BC=1cm,求陰影部分的面積.(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:
商品 | 甲 | 乙 |
進價(元/件) | x60 | x |
售價(元/件) | 200 | 100 |
若用1800元購進甲種商品的件數與用900元購進乙種商品的件數相同.
(1)求甲、乙兩種商品的進價是多少元?
(2)若超市銷售甲、乙兩種商品共100件,其中銷售甲種商品為a件(a40),設銷售完100件甲、乙兩種商品的總利潤為w元,求w與a之間的函數關系式,并求出w的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經過點C,連接AC,OD交于點E.
(1)證明:OD∥BC;
(2)若tan∠ABC=2,證明:DA與⊙O相切;
(3)在(2)條件下,連接BD交于⊙O于點F,連接EF,若BC=1,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,過點B作直線EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.
(1)請?zhí)骄?/span>EF與⊙O的位置關系,并說明理由;
(2)求⊙O的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,RtΔABC中∠C=90°,∠ABC=30°,ΔABC繞點C順時針旋轉得ΔA1B1C,當A1落在AB上時,連接B1B,取B1B的中點D,連接A1D,則的值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com