【題目】(1)問題發(fā)現(xiàn):如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.

①寫出線段CF與DG的數(shù)量關(guān)系;

②寫出直線CF與DG所夾銳角的度數(shù).

(2)拓展探究:

如圖②,將正方形AEFG繞點(diǎn)A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.

(2)問題解決

如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點(diǎn).若點(diǎn)D在直線BC上運(yùn)動,連接OE,則在點(diǎn)D的運(yùn)動過程中,線段OE的長的最小值.(直接寫出結(jié)果)

【答案】(1)①易得CF=DG;45;

(2) (1)中的結(jié)論仍然成立,證明見詳解;

(3).

【解析】

(1)①易得CF=DG;

45;

(2) 連接AC、AF,在正方形ABCD中,可得△CAF∽DAG,=,CF=DG,

在△CHD中,∠CHD=180-135=45,(1)中的結(jié)論是否仍然成立;

(3)OE⊥CE時,OE最短,此時OE=CE,△OEC為等腰直角三角形,OC=AC=2,可得OE的值.

(1)①易得CF=DG;

45

(2)

連接AC、AF,在正方形ABCD中,延長CFDGH點(diǎn),

CAD=∠BCD=45,

設(shè)AD=CD=a,易得AC=a=AD,

同理在正方形AEFG中,∠FAG=45,AF=AG,

∠CAD=∠FAG, ∠CAD-∠2=∠FAG-∠2,

∠1=∠3

△CAF∽DAG,

=,CF=DG;

②由△CAF∽DAG,∠4=∠5,

∠ACD=∠4+∠6=45, ∠5+∠6=45,

∠5+∠6+∠7=135,

在△CHD中,∠CHD=180-135=45,

(1)中的結(jié)論是否仍然成立

(3)

由∠BAC=∠DAE=90,可得∠BAD=∠CAE,又AB=AC,AD=AE,

可得△BAD≌△CAE,

∠ACE=∠ABC=45,

∠ACB=45,∠BCE=90,即CE⊥BC,

根據(jù)點(diǎn)到直線的距離垂線段最短,

OE⊥CE時,OE最短,此時OE=CE,△OEC為等腰直角三角形,

OC=AC=2,

由等腰直角三角形性質(zhì)易得,OE=,

OE的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測量得到∠CAH=37°,DBH=60°,AB=10m,求GH的長.(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)AC分別在x軸正半軸、y軸的負(fù)半軸上,二次函數(shù)y(xh)2+k的圖象經(jīng)過B、C兩點(diǎn).

(1)求該二次函數(shù)的頂點(diǎn)坐標(biāo);

(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍;

(3)設(shè)m,且Amy1),Bm+1,y2)兩點(diǎn)都在該函數(shù)圖象上,試比較y1、y2的大小,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個信封,每個信封內(nèi)各裝有四張完全相同的卡片,其中一個信封內(nèi)的四張卡片上分別寫有1,2,3,4四個數(shù),另一個信封內(nèi)的四張卡片上分別寫有5,6,7,8四個數(shù).甲,乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于16,則甲獲勝,否則乙獲勝.

(1)請你通過列表(或畫樹狀圖)計(jì)算甲獲勝的概率;

(2)你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)與反比例函數(shù))的圖象都經(jīng)過點(diǎn)A(1,m).

(1)求反比例函數(shù)的表達(dá)式;

(2)當(dāng)二次函數(shù)與反比例函數(shù)的值都隨x的增大而減小時,求x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BC是⊙O的直徑,點(diǎn)DBC延長線上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,在我們進(jìn)入高中以后,將還會學(xué)到下面三角函數(shù)公式:

sin (αβ)sinαcosβcosαsinβ,

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)試仿照例題,求出cos 15°的準(zhǔn)確值;

(2)我們知道,tanα,試求出tan 15°的準(zhǔn)確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣a(x+1)(x﹣3)(a>0)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對稱軸與x軸交于點(diǎn)E,過點(diǎn)Cx軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長DEy軸于點(diǎn)F,連接AD、AF.

(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;

(2)判斷四邊形ACDE的形狀,并給出證明;

(3)當(dāng)a為何值時,ADF是直角三角形?

查看答案和解析>>

同步練習(xí)冊答案