【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠ACB的平分線交⊙O于點(diǎn)D.若AC=6,BC=8,則BD=__________.
【答案】
【解析】
根據(jù)直徑得出∠ACB=∠ADB=90°,根據(jù)勾股定理求出AB的長(zhǎng)度.根據(jù)直徑所對(duì)的圓周角是直角可得∠ACB=∠ADB=90°,再根據(jù)角平分線的定義可得∠DAC=∠BCD,然后求出AD=BD,再根據(jù)等腰直角三角形的性質(zhì)求解即可.
連接AD.
∵AB是直徑,∴∠ACB=∠ADB=90°(直徑所對(duì)的圓周角是直角).在Rt△ABC中,AC=6,BC=8,∴AB===10.
∵AB是直徑,∴∠ACB=∠ADB=90°.
∵∠ACB的平分線交⊙O于點(diǎn)D,∴∠DCA=∠BCD,∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=×10=5,即BD=5.
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生“自主學(xué)習(xí)、合作交流”的情況,對(duì)某班部分同學(xué)進(jìn)行了一段時(shí)間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,D類所占圓心角為 ;
(3)學(xué)校想從被調(diào)查的A類(1名男生、2名女生)和D類(男、女生各占一半)中分別選取一 位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用畫樹(shù)狀圖或列表的方法求所選的兩位同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,直線和直線、交于點(diǎn)C和D,點(diǎn)P是直線上一動(dòng)點(diǎn).
(1)如圖,當(dāng)點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí),,,之間存在什么數(shù)量關(guān)系?請(qǐng)你猜想結(jié)論并說(shuō)明理由.
(2)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),上述(1)中的結(jié)論是否還成立?若不成立,請(qǐng)直接寫出,,之間的數(shù)量關(guān)系,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求證△ABE≌△ADC;
(2)設(shè)BE與CD交于點(diǎn)O,∠DAB=30°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小華從一個(gè)圓形場(chǎng)地的A點(diǎn)出發(fā),沿著與半徑OA夾角為α的方向行走,走到場(chǎng)地邊緣B后,再沿著與半徑OB夾角為α的方向折向行走.按照這種方式,小華第五次走到場(chǎng)地邊緣時(shí)處于弧AB上,則α取值范圍是( )
A. 36°45° B. 45°54° C. 54°72° D. 72°90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程
(1)試證:無(wú)論m取任何實(shí)數(shù),方程都有兩個(gè)不相等的實(shí)數(shù)根.
(2)若方程有一個(gè)根為-4,求m的值及另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說(shuō)明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:
①;②;③;④;⑤
其中所有正確結(jié)論的序號(hào)是( )
A. ①②④ B. ①③④ C. ②③⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廣州火車南站廣場(chǎng)計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com