【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則圖中陰影部分的面積是( 。
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤元,設(shè)生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?
(2)設(shè)生產(chǎn)這件產(chǎn)品可獲利元,寫出關(guān)于的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m+1)x+2(m≠0),請(qǐng)判斷下列結(jié)論是否正確,并說明理由.
(1)當(dāng)m<0時(shí),函數(shù)y=mx2﹣(2m+1)x+2在x>1時(shí),y隨x的增大而減;
(2)當(dāng)m>0時(shí),函數(shù)y=mx2﹣(2m+1)x+2圖象截x軸上的線段長度小于2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,點(diǎn)分別是邊的中點(diǎn),連接.將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.
(1)問題發(fā)現(xiàn)
①當(dāng)時(shí),____________;②當(dāng)時(shí),___________.
(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明.
(3)問題解決
繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至三點(diǎn)在同一條直線上時(shí),直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來越高,某公司根據(jù)市場(chǎng)需求代理A,B兩種型號(hào)的凈水器,每臺(tái)A型凈水器比每臺(tái)B型凈水器進(jìn)價(jià)多200元,用5萬元購進(jìn)A型凈水器與用4.5萬元購進(jìn)B型凈水器的數(shù)量相等
(1)求每臺(tái)A型、B型凈水器的進(jìn)價(jià)各是多少元?
(2)該公司計(jì)劃購進(jìn)A,B兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷,其中A型凈水器為x臺(tái),購買資金不超過9.8萬元,試銷時(shí)A型凈水器每臺(tái)售價(jià)2500元,B型凈水器每臺(tái)售價(jià)2180元,公司決定從銷售A型凈水器的利潤中按每臺(tái)捐獻(xiàn)a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)的坐標(biāo)為,頂點(diǎn),分別在軸,軸上,點(diǎn)的坐標(biāo)為,過點(diǎn)的直線與矩形的邊交于點(diǎn),且點(diǎn)不與點(diǎn)重合.以為一邊作菱形,點(diǎn)在矩形的邊上,設(shè)直線的函數(shù)表達(dá)式為.
(1)當(dāng)時(shí),求直線的函數(shù)表達(dá)式;
(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的函數(shù)表達(dá)式;
(3)連接,設(shè)的面積為,的長為,請(qǐng)直接寫出與的函數(shù)表達(dá)式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,點(diǎn)E,F是對(duì)角線AC的三等分點(diǎn),點(diǎn)P在正方形的邊上,則滿足PE+PF=的點(diǎn)P的個(gè)數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更新樹木品種,某植物園計(jì)劃購進(jìn)甲、乙兩個(gè)品種的樹苗栽植培育若計(jì)劃購進(jìn)這兩種樹苗共41棵,其中甲種樹苗的單價(jià)為6元/棵,購買乙種樹苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量.請(qǐng)?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com