【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則圖中陰影部分的面積是( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤元,設生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?
(2)設生產(chǎn)這件產(chǎn)品可獲利元,寫出關于的函數(shù)解析式,寫出(1)中利潤最大的方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m+1)x+2(m≠0),請判斷下列結論是否正確,并說明理由.
(1)當m<0時,函數(shù)y=mx2﹣(2m+1)x+2在x>1時,y隨x的增大而減小;
(2)當m>0時,函數(shù)y=mx2﹣(2m+1)x+2圖象截x軸上的線段長度小于2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,點分別是邊的中點,連接.將繞點逆時針方向旋轉,記旋轉角為.
(1)問題發(fā)現(xiàn)
①當時,____________;②當時,___________.
(2)拓展探究試判斷:當時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
繞點逆時針旋轉至三點在同一條直線上時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水品質的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數(shù)量相等
(1)求每臺A型、B型凈水器的進價各是多少元?
(2)該公司計劃購進A,B兩種型號的凈水器共50臺進行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時A型凈水器每臺售價2500元,B型凈水器每臺售價2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形的頂點的坐標為,頂點,分別在軸,軸上,點的坐標為,過點的直線與矩形的邊交于點,且點不與點重合.以為一邊作菱形,點在矩形的邊上,設直線的函數(shù)表達式為.
(1)當時,求直線的函數(shù)表達式;
(2)當點的坐標為時,求直線的函數(shù)表達式;
(3)連接,設的面積為,的長為,請直接寫出與的函數(shù)表達式及自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,點E,F是對角線AC的三等分點,點P在正方形的邊上,則滿足PE+PF=的點P的個數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更新樹木品種,某植物園計劃購進甲、乙兩個品種的樹苗栽植培育若計劃購進這兩種樹苗共41棵,其中甲種樹苗的單價為6元/棵,購買乙種樹苗所需費用y(元)與購買數(shù)量x(棵)之間的函數(shù)關系如圖所示.
(1)求出y與x的函數(shù)關系式;
(2)若在購買計劃中,乙種樹苗的數(shù)量不超過35棵,但不少于甲種樹苗的數(shù)量.請設計購買方案,使總費用最低,并求出最低費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com