【題目】如圖,在直角坐標(biāo)系中,有格點三角形.

1)寫出三個頂點的坐標(biāo).

2)將三角形沿方向平移,當(dāng)點的對應(yīng)點軸上時,畫出平移后的三角形.

3)在給出圖形中找一格點(點除外),使三角形面積相等,并把滿足條件的格點用線連起來.

【答案】1A-6,1),B-21),C-3,4);(2)見詳解;(3)見詳解.

【解析】

1)由△ABC在平面直角坐標(biāo)系可得三頂點的坐標(biāo);

2)將三個頂點分別向右平移2格,再向上平移2格即可得;

3)由△PAC與△ABC共底AC,根據(jù)兩者面積相等知三角形在AC邊上的高相等求解可得.

解:(1A-6,1),B-21),C-34).

2)如圖所示,△A1B1C1即為所求.

3)如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是邊長為1的正方形,EBC邊的中點,沿AP折疊使D點落在AE上的點H處,連接PH并延長交BC于點F,則EF的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F.

(1) CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線長為2,將正方形ABCD沿直線EF折疊,則圖中陰影部分的周長為( 。

A. 8 B. 4 C. 8 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線A、B兩點.

1)求這個拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當(dāng)t 取何值時,MN有最大值?最大值是多少?

3)在2)的情況下,以AM、ND為頂點作平行四邊形,求第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,ABC中,以AC為直徑的O與邊AB交于點D,點E為O上一點,連接CE并延長交AB于點F,連接ED

(1)若B+FED=90°,求證:BC是O的切線;

(2)若FC=6,DE=3,F(xiàn)D=2,求O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙OAD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠EF=80°,則∠A____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,B=30°,CD,CE分別是AB邊上的中線和高.

(1)求證:AE=ED;

(2)若AC=2,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案