【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長度.
【答案】(1)證明見解析;(2)6.
【解析】試題分析:(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,從而得到DE=EF,DG∥EF,再利用一組對邊平行且相等的四邊形是平行四邊形證明即可;
(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.
試題解析:(1)∵D、G分別是AB、AC的中點(diǎn),∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點(diǎn),∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四邊形DEFG是平行四邊形;
(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M(jìn)為EF的中點(diǎn),OM=3,∴EF=2OM=6.
由(1)有四邊形DEFG是平行四邊形,∴DG=EF=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上
(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;
(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校在“國學(xué)經(jīng)典”中新建了一座吳玉章雕塑,小林站在距離雕塑3米的A處自B點(diǎn)看雕塑頭頂D的仰角為45°,看雕塑底部C的仰角為30°,求塑像CD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠D=∠C=90°,E是DC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是( )
A. 62° B. 31° C. 28° D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點(diǎn),EC=2BE,點(diǎn)D是AC的中點(diǎn),設(shè)△ABC,△ADF,△BEF的面積分別為且=24,則=___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線c1: 沿x軸翻折,得到拋物線c2 , 如圖1所示.
(1)請直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點(diǎn)為N,與x軸的交點(diǎn)從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點(diǎn)時,求m的值;②在平移過程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
解答下列問題:
(1)如果AB=AC,∠BAC=90,當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖2,線段CF,BD所在直線位置關(guān)系為 ,數(shù)量關(guān)系為 .
(2)如果AB=AC,∠BAC=90,當(dāng)點(diǎn)D在線段BC的延長線時,如圖3,(1)中的結(jié)論是否仍然成立,并說明理由。
(3)如果AB=AC,∠BAC是鈍角,點(diǎn)D在線段BC上,當(dāng)∠ABC滿足什么條件時,CF⊥BC(點(diǎn)C、F不重合)畫出圖形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AC交BD于點(diǎn)O,點(diǎn)E、點(diǎn)F分別是OA、OC的中點(diǎn),請判斷線段BE、DF的關(guān)系,并證明你的結(jié)論
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com