【題目】如圖,在中,,,的平分線交于點(diǎn),交的延長線于點(diǎn),于點(diǎn),,則的周長為_______

【答案】8

【解析】

由平行四邊形的性質(zhì)和角平分線得出∠F=FCB,證出BF=BC=9,同理得到DE=CD=6,利用勾股定理求得CG=EG=2,再利用平行線分線段成比例定理求得EF的長,即可得出結(jié)果.

∵四邊形ABCD是平行四邊形,
ABCDAD=BC=9,CD=AB=6,
∴∠F=DCF,
CF平分∠BCD,
∴∠FCB=DCF
∴∠F=FCB,

是等腰三角形,
BF=BC=9,

AF=BF-AB=9-6=3
同理:DE=CD=6,

是等腰三角形,

AE=AD-DE=9-6=3,

DGCF,

CG=EG,∠DGC=90,

,即,

CG=2CE=2CG=4,

∵四邊形ABCD是平行四邊形,
ADBC,即AEBC

,即

解得:EF=2,

的周長為:AF+ AE+ EF=3+3+2=8

故答案為:8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過點(diǎn)FFGAB于點(diǎn)G

1)試判斷FG與⊙O的位置關(guān)系,并說明理由.

2)若AC3,CD2.5,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形,以此方式,繞點(diǎn)O旋轉(zhuǎn)2018次得到正方形,如果點(diǎn)A的坐標(biāo)為(10),那么那么點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸相交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線MPN上移動(dòng),它們的坐標(biāo)分別為M(﹣14)、P3,4)、N3,1).若在拋物線移動(dòng)過程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3,則ab+c的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:將函數(shù)l的圖象繞點(diǎn)Pm,0)旋轉(zhuǎn)180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關(guān)于點(diǎn)P的相關(guān)函數(shù).

例如:當(dāng)m1時(shí),函數(shù)y=(x+12+5關(guān)于點(diǎn)P1,0)的相關(guān)函數(shù)為y=﹣(x325

1)當(dāng)m0時(shí)

一次函數(shù)yx1關(guān)于點(diǎn)P的相關(guān)函數(shù)為 ;

點(diǎn)(,﹣)在二次函數(shù)y=﹣ax2ax+1a0)關(guān)于點(diǎn)P的相關(guān)函數(shù)的圖象上,求a的值.

2)函數(shù)y=(x12+2關(guān)于點(diǎn)P的相關(guān)函數(shù)y=﹣(x+322,則m   ;

3)當(dāng)m1xm+2時(shí),函數(shù)yx2mxm2關(guān)于點(diǎn)Pm,0)的相關(guān)函數(shù)的最大值為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

操作發(fā)現(xiàn):

如圖1和圖2,已知點(diǎn)為正方形的邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn),除外),作射線,作于點(diǎn),于點(diǎn),于點(diǎn)

1)如圖1,當(dāng)點(diǎn)上(點(diǎn),除外)運(yùn)動(dòng)時(shí),求證:;

        

2)如圖2,當(dāng)點(diǎn)上(點(diǎn),除外)運(yùn)動(dòng)時(shí),請(qǐng)直接寫出線段,,之間的數(shù)量關(guān)系;

拓廣探索:

3)在(1)的條件下,找出與相等的線段,并說明理由;

4)如圖3,若點(diǎn)為矩形的邊上一點(diǎn),作射線,作于點(diǎn),于點(diǎn),于點(diǎn).若,,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB10,tanA

1)求弦AC的長;

2DAB延長線上一點(diǎn),且ABkBD,連接CD,若CD與⊙O相切,求k的值;

3)若動(dòng)點(diǎn)P3cm/s的速度從A點(diǎn)出發(fā),沿AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Qcm/s的速度從B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t 0t),連結(jié)PQ.當(dāng)t為何值時(shí),△BPQRt△?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校初一、初二年級(jí)各有500名學(xué)生,為了解兩個(gè)年級(jí)的學(xué)生對(duì)消防安全知識(shí)的掌握情況,學(xué)校從初一、初二年級(jí)各隨機(jī)抽取20名學(xué)生進(jìn)行消防安全知識(shí)測(cè)試,滿分100分,成績整理分析過程如下,請(qǐng)補(bǔ)充完整:

(收集數(shù)據(jù))

初一年級(jí)20名學(xué)生測(cè)試成績統(tǒng)計(jì)如下:

78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97

初二年級(jí)20名學(xué)生測(cè)試成績不低于80,但是低于90分的成績?nèi)缦拢?/span>

83 86 81 87 80 81 82

(整理數(shù)據(jù))按照如下分?jǐn)?shù)段整理、描述兩組樣本數(shù)據(jù):

成績

0

初一

2

3

7

5

3

初二

0

4

5

7

4

(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

年級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

76.5

76.5

132.5

初二

79.2

74

100.4

1)直接寫出,的值;

2)根據(jù)抽樣調(diào)查數(shù)據(jù),估計(jì)初一年級(jí)消防安全知識(shí)測(cè)試成績?cè)?/span>70分及其以上的大約有多少人?

3)通過以上分析,你認(rèn)為哪個(gè)年級(jí)對(duì)消防安全知識(shí)掌握得更好,并說明推斷的合理性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊在正方形的邊上,連結(jié)、

1)觀察猜想之間的大小關(guān)系,并證明你的結(jié)論;

2)圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在,說出旋轉(zhuǎn)過程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案