【題目】如圖,點(diǎn)的坐標(biāo)分別為,拋物線的頂點(diǎn)在線段上運(yùn)動,與軸交于兩點(diǎn)(的左側(cè)),若點(diǎn)的橫坐標(biāo)的最小值為0,則點(diǎn)的橫坐標(biāo)最大值為(

A.6B.7C.8D.9

【答案】B

【解析】

根據(jù)待定系數(shù)法求得頂點(diǎn)是A時的解析式,進(jìn)而即可求得頂點(diǎn)是B時的解析式,然后求得與x軸的交點(diǎn)即可求得.

解:∵點(diǎn)C的橫坐標(biāo)的最小值為0,此時拋物線的頂點(diǎn)為A,
∴設(shè)此時拋物線解析式為y=ax-12+1,
代入(00)得,a+1=0
a=-1,
∴此時拋物線解析式為y=-x-12+1,
∵拋物線的頂點(diǎn)在線段AB上運(yùn)動,
∴當(dāng)頂點(diǎn)運(yùn)動到B5,4)時,點(diǎn)D的橫坐標(biāo)最大,
∴拋物線從A移動到B后的解析式為y=-x-52+4,
y=0,則0=-x-52+4,
解得x=73,
∴點(diǎn)D的橫坐標(biāo)最大值為7
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶八中某數(shù)學(xué)興趣小組同學(xué)探究函數(shù)的圖象與性質(zhì),根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),該小組進(jìn)行了系列探究.

下表給出了自變量與函數(shù)的一些對應(yīng)值:

-3

-2

-1

0

1

2

3

2

3

4

1

1)補(bǔ)全表格: , ;

2)在如圖所示的面直角坐標(biāo)系中,補(bǔ)全函數(shù)的圖象并寫出該函數(shù)的一條性質(zhì):

____________________________________________________________________________;

3)若函數(shù),直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】B,CO上的兩個定點(diǎn),A是圓上的動點(diǎn),<∠BAC90°BDAC,CDAB

1)如圖1,如果△ABC是等邊三角形,求證BDO的切線:

2)如圖2,如果60°<∠BAC90°,BD,CD分別交OE,F,研究五邊形ABEFC的性質(zhì);

探索AE、AFBC的數(shù)量關(guān)系,并證明你的結(jié)論:

如圖3,若O的半徑為4,∠BAC75°,求邊EF的長;

ABc,ACb,直接寫出BE,CF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A(3,0),頂點(diǎn)By軸正半軸上,頂點(diǎn)Dx軸負(fù)半軸上,若拋物線y=x25x+c經(jīng)過點(diǎn)BC,則菱形ABCD的面積為(

A.15B.20C.25D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)C是圓周上一點(diǎn),連接AC、BC,以點(diǎn)C為端點(diǎn)作射線CD、CP分別交線段AB所在直線于點(diǎn)D、P,使∠1=∠2=∠A

1)求證:直線PCO的切線;

2)若CD4,BD2,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線x1對稱,點(diǎn)A的坐標(biāo)為(﹣1,0).

1)求二次函數(shù)的表達(dá)式;

2)連接BC,若點(diǎn)Py軸上時,BPBC的夾角為15°,求線段CP的長度;

3)當(dāng)axa+1時,二次函數(shù)yx2+bx+c的最小值為2a,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個題目:

如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)BBDAC,交AO的延長線于點(diǎn)D,通過構(gòu)造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點(diǎn)O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A1,2)和點(diǎn)B4,5),當(dāng)直線ykx2kk為常數(shù))與線段AB有交點(diǎn)時,k的取值范圍為(  )

A.k≤2k≥B.2≤k≤

C.2≤k≤00≤k≤D.2k00k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線分別交BC、AC于點(diǎn)D、EBEAD于點(diǎn)F,ABAD

1)判斷△FDB與△ABC是否相似,并說明理由;

2BC6,DE2,求△BFD的面積.

查看答案和解析>>

同步練習(xí)冊答案