【題目】已知:AB為⊙O的直徑,點(diǎn)C為弧AB的中點(diǎn),點(diǎn)D為⊙O上一點(diǎn),連接CD,交AB于點(diǎn)M,AE為∠DAM的平分線,交CD于點(diǎn)E.
(1)如圖1,連接BE,若∠ACD=22°,求∠MBE的度數(shù);
(2) 如圖2,連接DO并延長(zhǎng),交⊙O于點(diǎn)F,連接AF,交CD于點(diǎn)N.
①求證:DM2+CN2=CM2;
②如圖3,當(dāng)AD=1,AB=時(shí),請(qǐng)直接寫(xiě)出線段ME的長(zhǎng).
【答案】(1);(2)①見(jiàn)解析;②
【解析】
(1)由圓周角定理,得到∠CAB=∠ABC=∠ADC= 45°,由角平分線的定義和三角形的外角性質(zhì),得到∠CAE=∠CEA,結(jié)合等腰三角形的性質(zhì)和三角形的內(nèi)角和定理,即可求出答案;
(2)①根據(jù)題意,將△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到,連接,由旋轉(zhuǎn)的性質(zhì),△ADM≌△,得到DM=,然后證明△AC≌△MAC,得到=CM,利用勾股定理,即可得到結(jié)論成立;
②連接CF,由(1)可知AC=BC=CE,根據(jù)等腰直角三角形的性質(zhì)和勾股定理求出CE的長(zhǎng)度,然后利用相似三角形的判定和性質(zhì),得到線段的比,然后構(gòu)建方程,求出CM的長(zhǎng)度,即可得到ME的長(zhǎng)度.
(1)解:∵AB是⊙O的直徑,
∴∠ACB=90°,
∵點(diǎn)C為弧AB中點(diǎn),
∴=,
∴∠CAB=∠ABC=∠ADC= 45°,AC=BC
∴△ACB是等腰直角三角形
∵∠DAM的平分線,
∴∠MAE=∠EAD
∵∠CAE=∠CAB+∠MAE,∠CEA=∠ADC+∠EAD,
∴∠CAE=∠CEA,
∴AC=CE=BC
∴∠CBE=∠CBM+∠MBE=
∵∠ACD=22°,
又∵∠CBM=45°
∴∠MBE=;
(2)證明:將△ADM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到,連接,
∵DF是⊙O的直徑,
∴∠DAF=90°
∵∠ADC=45°
∴△AND為等腰三角形,AD=AN
∴和AN重合
∴△ADM≌△ANM’
∴DM=,AM=,∠=∠ADC=45°,
∵∠M’ AM=90°,∠CAB=45°,
∴∠=45°
∴△M’ AC≌△MAC(SAS),
∴=CM
∵∠M’NA=∠ADC=∠AND=45°,
∴∠M’ND=∠M’NC=90°,
∴M’ N2+ CN 2=C M’ 2,
∴MD2+ CN 2=C M2 ;
(3)如圖:連接CF,
∵AB與DF為直徑,AB=,AD=1,
∴∠DCF=90°,∠DAF=90°,
∴,
由(1)可知,△AND是等腰直角三角形,△ABC是等腰直角三角形,
∴AN=AD=1,∠AND=45°,AC=BC=CE=,
∴NF=3-1=2,
∴△CNF是等腰直角三角形,
∴CN=CF=,
∴,
∵∠AMD=∠CMB,∠ADM=∠CBM=45°,
∴△ADM∽△CBM,
∴,
∵,,
∴,
解得:,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問(wèn)題:
(1)被抽樣調(diào)查的學(xué)生有______人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)每天戶外活動(dòng)時(shí)間的中位數(shù)是______(小時(shí));
(3)該校共有2000名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過(guò)1小時(shí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形在平面直角坐標(biāo)系中, 交 軸于點(diǎn),動(dòng)點(diǎn) 從原點(diǎn)出發(fā),以每秒 1 個(gè)單位長(zhǎng)度的速度沿 軸正方向移動(dòng),移動(dòng)時(shí)間為秒,過(guò)點(diǎn) P 作垂直于 軸的直線,交 于點(diǎn) M ,交 或 于點(diǎn) N ,直線掃過(guò)矩形 的面積為.
(1)求點(diǎn) 的坐標(biāo);
(2)求直線 移動(dòng)過(guò)程中到點(diǎn)之前的 關(guān)于 的函數(shù)關(guān)系式;
(3)在直線 移動(dòng)過(guò)程中,第一象限的直線上是否存在一點(diǎn) ,使 是等腰直角三角形? 若存在,直接寫(xiě)出點(diǎn) 的坐標(biāo);若不存在,說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問(wèn)卷調(diào)查,發(fā)出問(wèn)卷140份,每位學(xué)生的家長(zhǎng)1份,每份問(wèn)卷僅表明一種態(tài)度.將回收的問(wèn)卷進(jìn)行整理(假設(shè)回收的問(wèn)卷都有效),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況統(tǒng)計(jì)圖
根據(jù)以上信息回答下列問(wèn)題:
(1)回收的問(wèn)卷數(shù)為 份,“嚴(yán)加干涉”部分對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若將“稍加詢問(wèn)”和“從來(lái)不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)“管理不嚴(yán)”的家長(zhǎng)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與矩形ABCO的邊AB交于點(diǎn)G,與邊BC交于點(diǎn)D,過(guò)點(diǎn)A,D作DE//AF,交直線y=kx(k<0)于點(diǎn)E,F,若OE=OF,BG=2GA,則四邊形ADEF的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備組織八年級(jí)學(xué)生春游,供學(xué)生選擇的春游地點(diǎn)分別是:植物園、太陽(yáng)島、東北虎林園.每名學(xué)生只能選擇其中一個(gè)春游地點(diǎn)(必選且只選一個(gè)).該校從八年級(jí)學(xué)生中隨機(jī)抽取了a名學(xué)生,對(duì)他們選擇春游地點(diǎn)的情況進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖.
(1)求a的值.
(2)求a名學(xué)生中選擇去植物園春游的人數(shù)占所抽取人數(shù)的百分比是多少?
(3)如果該校八年級(jí)有440名學(xué)生,請(qǐng)你估計(jì)選擇去太陽(yáng)島春游的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)中學(xué)現(xiàn)有學(xué)生2 870人,學(xué)校為了進(jìn)一步豐富學(xué)生課余生活,擬調(diào)查各興趣小組活動(dòng)情況,為此校學(xué)生會(huì)委托小容、小易進(jìn)行一次隨機(jī)抽樣調(diào)查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計(jì)圖1,小易繪制的統(tǒng)計(jì)圖2(不完整)如下:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖1、2中提供的信息,解答下列問(wèn)題:
(1)寫(xiě)出2條有價(jià)值信息(不包括下面要計(jì)算的信息);
(2)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請(qǐng)將小易畫(huà)的統(tǒng)計(jì)圖中的“體育”部分的圖形補(bǔ)充完整;
(3)愛(ài)好“書(shū)畫(huà)”的人數(shù)占被調(diào)查人數(shù)的百分?jǐn)?shù)是多少?估計(jì)實(shí)驗(yàn)中學(xué)現(xiàn)有的學(xué)生中,有多少人愛(ài)好“書(shū)畫(huà)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線x=1,以下結(jié)論:①2a+b=0;②b+2c<0;③4a+2b+c<0;④若(0,y1),(1.5,y2)是拋物線上的兩點(diǎn),那么y1<y2.其中正確的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船從位于燈塔C的北偏東方向,距離燈塔60海里的小島A出發(fā),沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東方向上的B處,這時(shí)輪船B與小島A的距離是( )
A.海里B.海里C.120海里D.60海里
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com