如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.                                             

(1)求拋物線的解析式;                                                                       

(2)是否存在這樣的P點(diǎn),使線段PC的長有最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由;                

(3)求△PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).                                           

                                                              

                                                                                                       

                                                                                                          


【考點(diǎn)】二次函數(shù)綜合題.                                                                     

【專題】幾何綜合題;壓軸題.                                                              

【分析】(1)已知B(4,m)在直線y=x+2上,可求得m的值,拋物線圖象上的A、B兩點(diǎn)坐標(biāo),可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值.                                         

(2)要弄清PC的長,實(shí)際是直線AB與拋物線函數(shù)值的差.可設(shè)出P點(diǎn)橫坐標(biāo),根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標(biāo),進(jìn)而得到關(guān)于PC與P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.                    

(3)當(dāng)△PAC為直角三角形時(shí),根據(jù)直角頂點(diǎn)的不同,有三種情形,需要分類討論,分別求解.                  

【解答】解:(1)∵B(4,m)在直線y=x+2上,                                        

∴m=4+2=6,                                                                                     

∴B(4,6),                                                                                   

∵A(,)、B(4,6)在拋物線y=ax2+bx+6上,                                     

,解得,                                              

∴拋物線的解析式為y=2x2﹣8x+6.                                                        

                                                                                                          

(2)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),則C點(diǎn)的坐標(biāo)為(n,2n2﹣8n+6),                  

∴PC=(n+2)﹣(2n2﹣8n+6),                                                           

=﹣2n2+9n﹣4,                                                                                 

=﹣2(n﹣2+,                                                                        

∵PC>0,                                                                                         

∴當(dāng)n=時(shí),線段PC最大且為.                                                       

                                                                                                          

(3)∵△PAC為直角三角形,                                                                

i)若點(diǎn)P為直角頂點(diǎn),則∠APC=90°.                                                   

由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;                        

ii)若點(diǎn)A為直角頂點(diǎn),則∠PAC=90°.                                                  

如答圖3﹣1,過點(diǎn)A(,)作AN⊥x軸于點(diǎn)N,則ON=,AN=.                

過點(diǎn)A作AM⊥直線AB,交x軸于點(diǎn)M,則由題意易知,△AMN為等腰直角三角形,              

∴MN=AN=,∴OM=ON+MN=+=3,                                                

∴M(3,0).                                                                                  

設(shè)直線AM的解析式為:y=kx+b,                                                          

則:,解得,                                                             

∴直線AM的解析式為:y=﹣x+3  ①                                                     

又拋物線的解析式為:y=2x2﹣8x+6 ②                                                    

聯(lián)立①②式,解得:x=3或x=(與點(diǎn)A重合,舍去)                                   

∴C(3,0),即點(diǎn)C、M點(diǎn)重合.                                                         

當(dāng)x=3時(shí),y=x+2=5,                                                                        

∴P1(3,5);                                                                                 

              

iii)若點(diǎn)C為直角頂點(diǎn),則∠ACP=90°.                                                  

∵y=2x2﹣8x+6=2(x﹣2)2﹣2,                                                             

∴拋物線的對稱軸為直線x=2.                                                               

如答圖3﹣2,作點(diǎn)A(,)關(guān)于對稱軸x=2的對稱點(diǎn)C,                          

則點(diǎn)C在拋物線上,且C(,).                                                      

當(dāng)x=時(shí),y=x+2=.                                                                          

∴P2,).                                                                              

∵點(diǎn)P1(3,5)、P2,)均在線段AB上,                                          

∴綜上所述,△PAC為直角三角形時(shí),點(diǎn)P的坐標(biāo)為(3,5)或(,).                    

【點(diǎn)評】此題主要考查了二次函數(shù)解析式的確定、二次函數(shù)最值的應(yīng)用以及直角三角形的判定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法等知識.                                                                                            

           

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


甲、乙兩輛汽車分別從A、B兩地同時(shí)出發(fā),沿同一條公路相向而行.乙車出發(fā)2h休息.與甲車相遇.繼續(xù)行駛.設(shè)甲、乙兩車與B地的距離y(km)與行駛的時(shí)間x(h)之間的函數(shù)圖象如圖所示.

(1)寫出甲車與B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系式 _______

(2)乙車休息的時(shí)間為_________;

(3)寫出休息前,乙車與B地的距離y(km)與行駛的時(shí)間x(h)之間的函數(shù)關(guān)系式___________;休息后,乙車與B地的距離y(km)與行駛的時(shí)間x(h)之間的函數(shù)關(guān)系式______;

(4)求行駛多長時(shí)間兩車相距100km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列選項(xiàng)中,不是依據(jù)三角形全等知識解決問題的是(     )

A.利用尺規(guī)作圖,作一個(gè)角等于已知角

B.工人師傅用角尺平分任意角

C.利用卡鉗測量內(nèi)槽的寬

D.用放大鏡觀察螞蟻的觸角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個(gè)正方形的面積是9a2﹣6a+1(a>1),則該正方形的周長是      .                   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若不等式組有實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。              

A.m≤                       B.m<                     C.m>                     D.m≥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


父親節(jié)快到了,明明準(zhǔn)備為爸爸煮四個(gè)大湯圓作早點(diǎn):一個(gè)芝麻餡,一個(gè)水果餡,兩個(gè)花生餡,四個(gè)湯圓除內(nèi)部餡料不同外,其它一切均相同.                                                                       

(1)求爸爸吃前兩個(gè)湯圓剛好都是花生餡的概率;                                       

(2)若給爸爸再增加一個(gè)花生餡的湯圓,則爸爸吃前兩個(gè)湯圓都是花生餡的可能性是否會增大?請說明理由.                                               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一種花瓣的花粉顆粒直徑約為0.0000065米,將數(shù)據(jù)0.0000065用科學(xué)記數(shù)法表示為      .               

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


根據(jù)下列條件分別確定函數(shù)y=kx+b的解析式:

(1)y與x成正比例,當(dāng)x=2時(shí),y=3;

(2)直線y=kx+b經(jīng)過點(diǎn)(2,4)與點(diǎn)(.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)E在BC的延長線上,下列條件中不能判定AB∥CD的是( 。

A.∠3=∠4   B.∠1=∠2   C.∠B=∠DCE     D.∠D+∠DAB=180°

查看答案和解析>>

同步練習(xí)冊答案