【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(提示:正方形的四條邊都相等,四個角都是直角)
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點D在線段BC上時(與點B不重合),如圖2,線段CF,BD所在直線的位置關(guān)系為 , 線段CF,BD的數(shù)量關(guān)系為;
②當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當(dāng)∠ACB滿足條件時,CF⊥BC(點C,F(xiàn)不重合),不用說明理由.
【答案】
(1)垂直;相等
(2)45°
【解析】解:(1)①CF與BD位置關(guān)系是垂直,數(shù)量關(guān)系是相等,理由是:
如圖2,∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∴∠DAC+∠CAF=90°,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=90°,且∠B=∠ACB=45°,
∴∠CAF=∠BAD,
∴△BAD≌△CAF,
∴BD=CF,∠B=∠ACF=45°,
∴∠ACB+∠ACF=45°+45°=90°,
即∠BCF=90°,
∴BC⊥CF,
即BD⊥CF;
故答案為:垂直,相等;
②當(dāng)點D在BC的延長線上時,①的結(jié)論仍成立,理由是:
如圖3,由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD,
∠ACF=∠ABD,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACF=∠ABC=45°
∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;(2)當(dāng)∠BCA=45°時,CF⊥BD,理由是:
如圖4,過點A作AQ⊥AC,交BC于點Q,
∵∠BCA=45°,
∴∠AQC=45°,
∴∠AQC=∠BCA,
∴AC=AQ,
∵AD=AF,∠QAC=∠DAF=90°,
∴∠QAC﹣∠DAC=∠DAF﹣∠DAC,
∴∠QAD=∠CAF,
∴△QAD≌△CAF,
∴∠ACF=∠AQD=45°,
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(1)①證明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,則∠BCF=∠ACB+∠ACF=90°,所以BD與CF相等且垂直;②①的結(jié)論仍成立,同理證明△DAB≌△FAC,可得結(jié)論:垂直且相等;(2)當(dāng)∠ACB滿足45°時,CF⊥BC;如圖4,作輔助線,證明△QAD≌△CAF,即可得出結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.點P從A點出發(fā),沿路徑向終點B運動,點Q從B點出發(fā),沿路徑向終點A運動.點P 和Q分別和的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過點P和Q作PE⊥l于E,QF⊥l于F.則點P運動多少秒時,△PEC和△CFQ全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長BC和DC′交于點E,則四邊形ACEC′的形狀是 .
(2)創(chuàng)新小組將圖(1)中的△ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請證明這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,且,BC=10cm,點D為AB的中點.如果點P在線段BC上以2cm/s的速度由點B向C點運動,同時,點Q在線段AC上由點A向C點以4cm/s的速度運動.
(1)若點P、Q兩點分別從B、A兩點同時出發(fā),經(jīng)過2秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點P、Q兩點分別從B、A兩點同時出發(fā),△CPQ的周長為18cm,問:經(jīng)過幾秒后,△CPQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“文博會”期間,某公司展銷如圖所示的長方形工藝品,該工藝品長60cm,寬40cm,中間鑲有寬度相同的三條絲綢花邊.
(1)若絲綢花邊的面積為650cm2 , 求絲綢花邊的寬度;
(2)已知該工藝品的成本是40元/件,如果以單價100元/件銷售,那么每天可售出200件,另每天所需支付的各種費用2000元,根據(jù)銷售經(jīng)驗,如果將銷售單價降低1元,每天可多售出20件,同時,為了完成銷售任務(wù),該公司每天至少要銷售800件,那么該公司應(yīng)該把銷售單價定為多少元,才能使每天所獲銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. BF與CE相交于點M
(1)求證:①△ACE≌△AFB;②EC⊥BF.
(2)如圖乙連接EF,畫出△ABC邊BC上的高線AD,延長DA交EF于點N,其他條件不變,下列四個結(jié)論:①∠EAN=∠ABC;
②△AEN≌△BAD;③;④EN=FN。
正確的結(jié)論是____________(把正確結(jié)論的序號全部填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊維修同一段路面,甲隊先清理路面,乙隊在甲隊清理后鋪設(shè)路面.乙隊在中途停工了一段時間,然后按停工前的工作效率繼續(xù)工作.在整個工作過程中,甲隊清理完的路面長y(米)與時間x(時)的函數(shù)圖象為線段OA,乙隊鋪設(shè)完的路面長y(米)與時間x(時)的函數(shù)圖象為折線BC-CD-DE,如圖所示,從甲隊開始工作時計時.
(1)分別求線段BC、DE所在直線對應(yīng)的函數(shù)關(guān)系式.
(2)當(dāng)甲隊清理完路面時,求乙隊鋪設(shè)完的路面長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題.
請補(bǔ)全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標(biāo)示所需,當(dāng)y=0時,求得方程﹣2x2﹣4x=0的解為;并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com