如圖已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF.
(1) 求證:四邊形AECF是平行四邊形;
(2) 若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長 .
科目:初中數(shù)學 來源: 題型:
如圖,在單位長度為1的正方形網(wǎng)格中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格圖中進行下列操作(以下結(jié)果保留根號):
(1)利用網(wǎng)格確定該圓弧所在圓的圓心D點的位 置,并寫出D點的坐標為 ;
(2)連接AD、CD,則⊙D的半徑為 ∠ADC的度數(shù)為 ;
(3)若扇形DAC是一個圓錐的側(cè)面展開圖,求該圓錐底面半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,菱形ABCD中,∠A=600.點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止;點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設(shè)點P運動的時間為t (s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖像由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖272,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF∶S四邊形BCED的值為( )
A.1∶3 B.2∶3 C.1∶4 D.2∶5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖2716,AB是⊙O的直徑,弦CD⊥AB于點E,過點B作⊙O的切線,交AC的延長線于點F.已知OA=3,AE=2.
(1)求CD的長;
(2)求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在面積為15的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,作AF垂直于直線CD于點F,若AB=5,BC=6,則CE+CF的值為( 。
A. 11+ B. 11﹣ C. 11+或11﹣ D. 11+或1+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com