(2006•玉溪)如圖,軸對(duì)稱(chēng)圖形ABCDEFG的面積為56,∠A=90°,則點(diǎn)D的坐標(biāo)是( )

A.(0,6)
B.(0,6.5)
C.(0,7)
D.(0,7.5)
【答案】分析:根據(jù)等腰直角三角形的性質(zhì)求出△ABG的面積,得出矩形CDEF的面積,從而求出DE的長(zhǎng),結(jié)合軸對(duì)稱(chēng)的基本性質(zhì)得到點(diǎn)D的坐標(biāo).
解答:解:∵這是一個(gè)軸對(duì)稱(chēng)圖形,
∴A點(diǎn)坐標(biāo)為(16,6).
又∵∠A=90°,
∴△ABG是等腰直角三角形,
∴AB=AG=6
∴△ABG的面積為AB•AG=×6×6=36,
所以矩形CDEF的面積為20,
又∵EF=16-6=10,
∴DE=2,
所以D點(diǎn)坐標(biāo)為(0,7).
故選D.
點(diǎn)評(píng):此題考查軸對(duì)稱(chēng)的基本性質(zhì),結(jié)合了圖形的常見(jiàn)的變化,要根據(jù)等腰直角三角形的性質(zhì)求出邊長(zhǎng);此題考查的計(jì)算技巧性很強(qiáng),要注意對(duì)一些特殊三角形的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《相交線(xiàn)與平行線(xiàn)》(02)(解析版) 題型:填空題

(2006•玉溪)如圖,已知DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•玉溪)如圖,半徑分別為4cm和3cm的⊙O1,⊙O2相交于A(yíng),B兩點(diǎn),且O1O2=6cm,過(guò)點(diǎn)A作⊙O1的弦AC與⊙O2相切,作⊙O2的弦AD與⊙O1相切.
(1)求證:AB2=BC•BD;
(2)兩圓同時(shí)沿連心線(xiàn)都以每秒1cm的速度相向移動(dòng),幾秒鐘時(shí),兩圓相切?
(3)在(2)的條件下,三點(diǎn)B,C,D能否在同一直線(xiàn)上?若能,求出移動(dòng)的時(shí)間;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•玉溪)如圖1,過(guò)平行四邊形紙片的一個(gè)頂點(diǎn)作它的一條垂線(xiàn)段h,沿這條垂線(xiàn)段剪下三角形紙片,將它平移到右邊,平移距離等于平行四邊形的底邊長(zhǎng)a.
(1)平移后的圖形是矩形嗎?為什么?
(2)圖2中,BD是平移后的四邊形ABCD的對(duì)角線(xiàn),F(xiàn)為AD上一點(diǎn),CF交BD于點(diǎn)G,CE⊥BD于點(diǎn)E,求證:∠2=∠1+∠3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•玉溪)如圖,已知DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,則∠A=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案