在△ABC中,AD是高,AE是角平分線,∠B=20°,∠C=60°,求∠CAD和∠DAE的度數(shù).

解:∵AD是高,∠C=60°,
∴∠CAD=90°-∠C=90°-60°=30°;

∵∠B=20°,∠C=60°,
∴∠BAC=180°-∠B-∠C=180°-20°-60°=100°,
∵AE是角平分線,
∴∠CAE=∠BAC=×100°=50°,
∴∠DAE=∠CAE-∠CAD=50°-30°=20°.
分析:在Rt△ACD中,利用直角三角形兩銳角互余列式計(jì)算即可求出∠CAD;
根據(jù)三角形的內(nèi)角和等于180°列式求出∠BAC,再根據(jù)角平分線的定義求出∠CAE,然后列式計(jì)算即可求出∠DAE.
點(diǎn)評(píng):本題考查了三角形的高線,角平分線,主要利用了三角形的內(nèi)角和定理,熟記高線,角平分線的定義并利用好是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是BC上的中線,BC=4,∠ADC=30°,把△ADC沿AD所在直線翻折后點(diǎn)C落在點(diǎn)C′的位置,那么點(diǎn)D到直線BC′的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD是BC邊上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的長(zhǎng).(結(jié)果保留根號(hào))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE、DF分別是△ABD和△ACD的高線,求證:AD⊥EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案