【題目】2019年足球亞洲杯正在阿聯(lián)酋進行,這項起源于我國“蹴鞠”的運動項目近年來在我國中小學校園得到大力推廣,某次校園足球比賽規(guī)定:勝一場得3分,平一場得1分,負一場得0分,某足球隊共進行了8場比賽,得了12分,該隊獲勝的場數(shù)有幾種可能( )
A. 3B. 4C. 5D. 6
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.
(1)求二次函數(shù)的表達式;
(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O,Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;
(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,FM的交點分別是G,H,并且CG=GM,FH=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.
求:①tan∠DCG的值;
②點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司每月生產產品A4萬件和同類新型產品B若干萬件.產品A每件銷售利潤為200元,且在產品B銷售量每月不超過3萬件時,每月4萬件產品A能全部銷售,產品B的每月銷售量y(萬件)與每件銷售利潤x(元)之間的函數(shù)關系圖象如圖所示.
(1)求y與x的函數(shù)關系式;
(2)在保證A產品全部銷售的情況下,產品B每件利潤定為多少元時公司銷售產品A和產品B每月可獲得總利潤w1(萬元)最大?
(3)在不要求產品A全部銷售的情況下,已知受產品B銷售價的影響產品A每月銷售量:(萬件)與x(元)之間滿足關系z=0.024x﹣3.2,那么產品B每件利潤定為多少元時,公司每月可獲得最大的利潤?并求最大總利潤w2(萬元).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點,腰AB與⊙O相切于點D
(1)求證:AC是⊙O的切線;
(2)如圖2,連接CD,若tan∠BCD=,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點 A(,4)和點B(8,),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當時,直接寫出的解集;
(3)若點P是軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·湖州)(本小題10分)
我市水產養(yǎng)殖專業(yè)戶王大爺承包了30畝水塘,分別養(yǎng)殖甲魚和桂魚,有關成本、銷售情況如下表:
⑴2010年,王大爺養(yǎng)殖甲魚20畝,桂魚10畝,求王大爺這一年共收益多少萬元?(收益=銷售額-成本)
⑵2011年,王大爺繼續(xù)用這30畝水塘全部養(yǎng)殖甲魚和桂魚,計劃投入成本不超過70萬元。若每畝養(yǎng)殖的成本、銷售額與2010年相同,要獲得最大收益,他應養(yǎng)殖甲魚和桂魚各多少畝?
⑶已知甲魚每畝需要飼料500㎏,桂魚每畝需要飼料700㎏,根據(jù)⑵中的養(yǎng)殖畝數(shù),為了節(jié)約運輸成本,實際使用的運輸車輛每次裝載飼料的總量是原計劃每次裝載總量的2倍,結果運輸養(yǎng)殖所需要全部飼料比原計劃減少了2次,求王大爺原定的運輸車輛每次可裝載飼料多少㎏?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初二年級數(shù)學考試,(滿分為100分,該班學生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數(shù) | 2 | a | 20 | 16 | 4 | 50 |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;(答案直接填在題中橫線上)
(2)補全頻數(shù)分布直方圖;
(3)若該校八年級共有600名學生,且各個班級學生成績分布基本相同,請估計該校八年級上學期期末考試成績低于70分的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、E在⊙O上,∠B=2∠ACE,在BA的延長線上有一點P,使得∠P=∠BAC,弦CE交AB于點F,連接AE.
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=,求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩班分別選5名同學組成代表隊參加學校組織的“國防知識”選拔賽,現(xiàn)根據(jù)成績(滿分10分)制作如圖統(tǒng)計圖和統(tǒng)計表(尚未完成)
甲、乙兩班代表隊成績統(tǒng)計表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
請根據(jù)有關信息解決下列問題:
(1)填空:a= ,b= ;
(2)學校預估如果平均分能達8.5分,在參加市團體比賽中即可以獲獎,現(xiàn)應選派 代表隊參加市比賽;(填“甲”或“乙”)
(3)現(xiàn)將從成績滿分的3個學生中隨機抽取2人參加市國防知識個人競賽,請用樹狀圖或列表法求出恰好抽到甲,乙班各一個學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com