【題目】如圖,拋物線y=ax2+bx+ca≠0)的對稱軸是直線x=1,與x軸交于A、B-1,0),與y軸交于C.下列結(jié)論錯(cuò)誤的是(

A.二次函數(shù)的最大值為a+b+cB.4a-2b+c0

C.當(dāng)y0時(shí),-1x3D.方程ax2+bx+c=-2解的情況可能是無實(shí)數(shù)解,或一個(gè)解,或二個(gè)解.

【答案】D

【解析】

A. 根據(jù)對稱軸為時(shí),求得頂點(diǎn)對應(yīng)的y的值即可判斷;

B. 根據(jù)當(dāng)時(shí),函數(shù)值小于0即可判斷;

C. 根據(jù)拋物線與軸的交點(diǎn)坐標(biāo)即可判斷.

D. 根據(jù)拋物線與直線的交點(diǎn)情況即可判斷.

A.∵當(dāng)時(shí),,根據(jù)圖象可知,,正確.不符合題意;

B.∵當(dāng)時(shí),,根據(jù)圖象可知,,正確.不符合題意;

C.∵拋物線是軸對稱圖形,對稱軸是直線,點(diǎn),所以與軸的另一個(gè)交點(diǎn)的坐標(biāo)為,根據(jù)圖象可知:當(dāng)時(shí),,正確.不符合題意;

D. 根據(jù)圖象可知:拋物線與直線有兩個(gè)交點(diǎn),∴關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,本選項(xiàng)錯(cuò)誤,符合題意.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD邊長為6,∠BAD120°,點(diǎn)E、F分別在AB、AD上且BEAF,則EF的最小值為_____,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題 :如圖1,在四邊形中,點(diǎn)上一點(diǎn),∠=∠=∠=90°,求證:

2)探究:如圖2,在四邊形中,點(diǎn)上一點(diǎn),當(dāng)∠=∠=∠時(shí),上述結(jié)論是否依然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點(diǎn).二次函數(shù)的圖像經(jīng)過點(diǎn),與軸交于點(diǎn),與一次函數(shù)的圖像交于另一點(diǎn).

1)求二次函數(shù)的表達(dá)式;

2)當(dāng)時(shí),直接寫出的取值范圍;

3)平移,使點(diǎn)的對應(yīng)點(diǎn)落在二次函數(shù)第四象限的圖像上,點(diǎn)的對應(yīng)點(diǎn)落在直線上,求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,AD,BD⊙O的弦,BC⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長線相交于點(diǎn)E.

(1)求證:DC⊙O的切線;

(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y= -x+b的圖象與反比例函數(shù)x>0)的圖象交于點(diǎn)Am , 3)和B3 , n .AACx軸于C,交OBE,且EB = 2EO

1)求一次函數(shù)和反比例函數(shù)解析式

2)點(diǎn)P是線段AB上異于A,B的一點(diǎn),過PPDx軸于D,若四邊形APDC面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動點(diǎn),連接,長的最大值與最小值的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在ABC中,ABAC,點(diǎn)D,E分別在邊AB,AC上,且DEBC,若AD2,AE,則的值是   ;

2)如圖2,在(1)的條件下,將ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一定的角度,連接CEBD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;

3)如圖3,在四邊形ABCD中,ACBC于點(diǎn)C,∠BAC=∠ADCθ,且tanθ,當(dāng)CD6,AD3時(shí),請直接寫出線段BD的長度.

查看答案和解析>>

同步練習(xí)冊答案