(11·丹東)(本題14分)已知:二次函數(shù)軸交于A,B兩點(點A在點B的左側(cè)),點A、點B的橫坐標(biāo)是一元二次方程的兩個根.
(1)請直接寫出點A、點B的坐標(biāo).
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標(biāo).
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段OB上一個動點(點Q不與點O、B重合). 過點Q作QD∥AC交于BC點D,設(shè)Q點坐標(biāo)(m,0),當(dāng)面積S最大時,求m的值.
(1)A(-2,0)、B(6,0)
(2)將A(-2,0)、B(6,0)代入 則
     
    
∴對稱軸為直線   頂點為
(3)∵A、B兩點關(guān)于對稱軸 對稱,連結(jié)BC交對稱軸 于點P,則點P即為所求

∵B(6,0)、C(0,6) 所以過BC兩點的直線為:
代入,則   ∴ P(2,4)
(4)∵Q(m,0)    0<m<6    ∴ AQ="2+m     " BQ=6-m

     QD∥AC,  
     

∴當(dāng)時,的面積最大.   即    m=2解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(11·丹東)(本題12分)已知:正方形ABCD.

(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請直接寫出結(jié)論.

(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當(dāng)時,連接BE、DF,此時(1)中結(jié)論是否成立,如果成立,請證明;如果不成立,請說明理由.

(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當(dāng)時,連接BE、DF,猜想當(dāng)AE與AD滿足什么數(shù)量關(guān)系時,直線DF垂直平分BE.請直接寫出結(jié)論.

(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn),當(dāng)時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·丹東)(本題10分)某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:

方案一:從包裝盒加工廠直接購買,購買所需的費用與包裝盒數(shù)滿足如圖1所示的函數(shù)關(guān)系.

方案二:租賃機器自己加工,所需費用(包括租賃機器的費用和生產(chǎn)包裝盒的費用)與包裝盒滿足如圖2所示的函數(shù)關(guān)系.

根據(jù)圖像回答下列問題:

(1)方案一中每個包裝盒的價格是多少元?

(2)方案二中租賃機器的費用是多少元?生產(chǎn)一個包裝盒的費用是多少元?

(3)請分別求出的函數(shù)關(guān)系式.

(4)如果你是決策者,你認為應(yīng)該選擇哪種方案更省錢?并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·丹東)(本題10分)某文具店老板第一次用1000元購進一批文具,很快銷售完畢;第二次購進時發(fā)現(xiàn)每件文具進價比第一次上漲了2.5元.老板用2500元購進了第二批文具,所購進文具的數(shù)量是第一次購進數(shù)量的2倍,同樣很快銷售完畢.兩批文具的售價均為每件15元.

(1)問第二次購進了多少件文具?

(2)文具店老板在這兩筆生意中共盈利多少元?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·丹東)(本題10分)已知:如圖,在中,,以AC為直徑作⊙O交AB于點D.

(1)若,求線段BD的長.

(2)若點E為線段BC的中點,連接DE.       求證:DE是⊙O的切線.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·丹東)(本題10分)數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD=2cm.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中,,AB=10cm.請你根據(jù)以上數(shù)據(jù)計算GH的長.

,要求結(jié)果精確到0.1m)

 

查看答案和解析>>

同步練習(xí)冊答案