【題目】如圖,直立在點處的標桿長,站立在點處的觀察者從點處看到標桿頂、旗桿頂在一條直線上.已知,,,求旗桿高.
【答案】旗桿高為
【解析】
過E作EH⊥CD交CD于H點,交AB于點G,可證明四邊形EFDH為長方形,可得HD的長;可證明△AEG∽△CEH,故可求得CH的長,所以旗桿CD的長即可知.
解:過E作EH⊥CD交CD于H點,交AB于點G,如下圖所示:
由已知得,EF⊥FD,AB⊥FD,CD⊥FD,
∵EH⊥CD,EH⊥AB
∴四邊形EFDH為矩形
∴EF=GB=DH=1.7,EG=FB=3,GH=BD=10
∴AG=AB-GB=0.8
∵EH⊥CD,EH⊥AB,
∴AG∥CH,
∴△AEG∽△CEH
∴AG:CH=EG:EH,
∵EH=EG+GH=21m,
∴CH=6.3m,
∴CD=CH+HD=7.9m
答:旗桿高DC為7.9m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCO的頂點B(10,8),點A,C在坐標軸上,E是BC邊上一點,將△ABE沿AE折疊,點B剛好與OC邊上點D重合,過點E的反比例函數(shù)y=的圖象與邊AB交于點F,則線段BF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四點,∠APC=∠CPB=60°,過點C作CM∥BP交PA的延長線于點M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,給出下列條件:① ② ③ ④
其中能判定四邊形是平行四邊形的組合是________或 ________或_________或_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.Rt△ABC的頂點均在格點上,建立平面直角坐標系后,點A的坐標為(﹣4,1),點B的坐標為(﹣1,1).
(1)先將Rt△ABC向右平移5個單位,再向下平移1個單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1;
(2)將Rt△A1B1C1繞點A1順時針旋轉90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計算C1C2的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)和在第一象限內(nèi)的圖象如圖所示,點是的圖象上一動點,作軸于點,交的圖象于點,作軸于點,交的圖象于點,給出如下結論:①與的面積相等;②與始終相等;③四邊形的面積大小不會發(fā)生變化;④,其中正確的結論序號是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在鈍角三角形中,,,動點從點出發(fā)到點止,動點從點出發(fā)到點止,點運動的速度為,點運動的速度為,如果兩點同時開始運動,那么,
若AD=AE,求值.
若△ADE和△ABC相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1的單位正方形組成的網(wǎng)格中,按要求畫出坐標系及△A1B1C1及△A2B2C2;
(1)若點A、C的坐標分別為(﹣3,0)、(﹣2,3),請畫出平面直角坐標系并指出點B的坐標;
(2)畫出△ABC關于y軸對稱再向上平移1個單位后的圖形△A1B1C1;
(3)以圖中的點D為位似中心,將△A1B1C1作位似變換且把邊長放大到原來的兩倍,得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com