【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

【答案】1)裁剪出的側(cè)面?zhèn)數(shù)為6x+4(19-x)=(2x+76)個(gè)

裁剪出的底面?zhèn)數(shù)為5(19-x)=(-5x+95)個(gè)

2)最多可以做的盒子個(gè)數(shù)為30個(gè)

【解析】

試題(1)因?yàn)?/span>x張用A方法,則有(38-x)張用B方法,就可以根據(jù)題意分別表示出側(cè)面和底面的個(gè)數(shù).(2)由題意可得,側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù)之比為3:2,可以列出一元一次方程,求出x的值,從而可得側(cè)面的總數(shù),即可求得.

試題解析:(1)根據(jù)題意可得,側(cè)面:(個(gè)),底面:(個(gè)).

2)根據(jù)題意可得,,解得x=7,所以盒子=(個(gè)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從表可知,
①拋物線與x軸的交點(diǎn)為;
②拋物線的對(duì)稱軸是;
③函數(shù)y=ax2+bx+c的最大值為;
④x , y隨x增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EGEF

1)求證:BGCF

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于x的不等式組 的解集為x>1,且關(guān)于x的分式方程 + =3有非負(fù)整數(shù)解,則符合條件的m的所有值的和是(
A.﹣2
B.﹣4
C.﹣7
D.﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州某運(yùn)輸公司的一艘輪船在長(zhǎng)江上航行,往返于萬(wàn)州、朝天門(mén)兩地。假設(shè)輪船在靜水中的速度不變,長(zhǎng)江的水流速度不變,該輪船從萬(wàn)州出發(fā),逆水航行到朝天門(mén),停留一段時(shí)間(卸貨、裝貨、加燃料等,又順?biāo)叫蟹祷厝f(wàn)州,若該輪船從萬(wàn)州出發(fā)后所用時(shí)間為x(小時(shí)),輪船距萬(wàn)州的距離為y(千米),則下列各圖中,能反映y與x之間函數(shù)關(guān)系的圖象大致是【 】

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,以AB為斜邊,作直角△ABD,使點(diǎn)D落在△ABC內(nèi),∠ADB=90°.

(1)如圖1,若AB=AC,∠DBA=60°,AD=7 ,點(diǎn)P、M分別為BC、AB邊的中點(diǎn),連接PM,求線段PM的長(zhǎng);
(2)如圖2,若AB=AC,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,得到△ACE,連接ED并延長(zhǎng)交BC于點(diǎn)P,求證:BP=CP;
(3)如圖3,若AD=BD,過(guò)點(diǎn)D的直線交AC于點(diǎn)E,交BC于點(diǎn)F,EF⊥AC,且AE=EC,請(qǐng)直接寫(xiě)出線段BF、FC、AD之間的關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,Rt△ABC中,∠C=90°,AC=3,BC=4.點(diǎn)DAB邊上任意一點(diǎn),則CD的最小值為

(2)如圖②,在矩形ABCD中,AB=3,BC=4.點(diǎn)M、N分別在BD、BC上。求CM+MN的最小值

(3)如圖③,在矩形ABCD中,AB=3,BC=4.點(diǎn)EAB邊上的一點(diǎn),且AE=2,點(diǎn)FBC邊上的任意一點(diǎn)。把△BEF沿EF翻折,點(diǎn)B對(duì)應(yīng)點(diǎn)G,連接AG、CG.四邊形AGCD的面積的最小值是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、、在數(shù)軸上的位置如圖所示,所對(duì)應(yīng)的點(diǎn)分別為、,

在數(shù)軸上表示的點(diǎn)與表示的點(diǎn)之間的距離為________;

在數(shù)軸上表示的點(diǎn)與表示的點(diǎn)之間的距離為________;

在數(shù)軸上表示的點(diǎn)與表示的點(diǎn)之間的距離為________;

由此可得點(diǎn)之間的距離為________,點(diǎn)、之間的距離為________,點(diǎn)之間的距離為________

化簡(jiǎn):;

的倒數(shù)是它本身,的絕對(duì)值的相反數(shù)是,

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1經(jīng)過(guò)過(guò)點(diǎn)P(2,2),分別交x軸、y軸于點(diǎn)A(4,0),B。

(1)求直線l1的解析式;

(2)點(diǎn)Cx軸負(fù)半軸上一點(diǎn),過(guò)點(diǎn)C的直線l2交線段AB于點(diǎn)D。

如圖1,當(dāng)點(diǎn)D恰與點(diǎn)P重合時(shí),點(diǎn)Qt,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)QQMx軸,分別交直線l1、l2于點(diǎn)M、N。若,MN=2MQ,求t的值;

如圖2,若BC=CD,試判斷m,n之間的數(shù)量關(guān)系并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案