精英家教網 > 初中數學 > 題目詳情

已知:拋物線y=-x2-(m+3)x+m2-12與x軸交于A(x1,0)、B(x2,0)兩點,且x1<0,x2>0,拋物線與y軸交于點C,OB=2OA.

(1)求拋物線的解析式;

(2)在x軸上,點A的左側,求一點E,使△ECO與△CAO相似,并說明直線EC經過(1)中拋物線的頂點D;

(3)過(2)中的點E的直線y=x+b與(1)中的拋物線相交于M、N兩點,分別過M、N作x軸的垂線,垂足為、,點P為線段MN上一點,點P的橫坐標為t,過點P作平行于y軸的直線交(1)中的所求拋物線于點Q.是否存在t值,使∶S△QMN=35∶12,若存在,求出滿足條件的t值;若不存在,請說明理由.

答案:
解析:

  評注:本題考查了拋物線的解析式與一元二次方程的關系,另外還考查了直線、三角形、三角形面積等知識.解決本題的關鍵是確定一元二次方程兩根之間的關系、梯形和三角形面積的計算.


練習冊系列答案
相關習題

科目:初中數學 來源:江西省高安市2012屆九年級第一次模擬考試數學試題 題型:044

已知:拋物線y=a(x-2)2+b(ab<0)的頂點為A,與x軸的交點為B,C(點B在點C的左側).

(1)直接寫出拋物線對稱軸方程;

(2)若拋物線經過原點,且△ABC為直角三角形,求a,b的值;

(3)若D為拋物線對稱軸上一點,則以A,B,C,D為頂點的四邊形能否為正方形?若能,請求出a,b滿足的關系式;若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線

y=x交于點B、C(B在右、C在左).

1.求拋物線的解析式

2.設拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標,若不存在,說明理由

3.射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標軸),設運動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.

 

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線
y=x交于點B、C(B在右、C在左).
【小題1】求拋物線的解析式
【小題2】設拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標,若不存在,說明理由
【小題3】射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標軸),設運動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2012屆北京石景山中考二模數學試卷(帶解析) 題型:解答題

已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線
y=x交于點B、C(B在右、C在左).
【小題1】求拋物線的解析式
【小題2】設拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標,若不存在,說明理由
【小題3】射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標軸),設運動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年北京石景山中考二模數學試卷(解析版) 題型:解答題

已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線

y=x交于點B、C(B在右、C在左).

1.求拋物線的解析式

2.設拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標,若不存在,說明理由

3.射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標軸),設運動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.

 

查看答案和解析>>

同步練習冊答案